Aims: Urinary 8-oxo-7,8-dihydro-2¢-deoxyguanosine (8-oxodG) is a widely used biomarker of oxidative stress. However, variability between chromatographic and ELISA methods hampers interpretation of data, and this variability may increase should urine composition differ between individuals, leading to assay interference. Furthermore, optimal urine sampling conditions are not well defined. We performed inter-laboratory comparisons of 8-oxodG measurement between mass spectrometric-, electrochemical-and ELISA-based methods, using common within-technique calibrants to analyze 8-oxodG-spiked phosphate-buffered saline and urine samples. We also investigated human subject-and sample collection-related variables, as potential sources of variability. Results: Chromatographic assays showed high agreement across urines from different subjects, whereas ELISAs Kronos Science, Phoenix, Arizona. ANTIOXIDANTS & REDOX SIGNALINGVolume 18, Number 18, 2013 ª Mary Ann Liebert, Inc. DOI: 10.1089/ars.2012.4714 2377showed far more inter-laboratory variation and generally overestimated levels, compared to the chromatographic assays. Excretion rates in timed 'spot' samples showed strong correlations with 24 h excretion (the 'gold' standard) of urinary 8-oxodG (r p 0.67-0.90), although the associations were weaker for 8-oxodG adjusted for creatinine or specific gravity (SG). The within-individual excretion of 8-oxodG varied only moderately between days (CV 17% for 24 h excretion and 20% for first void, creatinine-corrected samples). Innovation: This is the first comprehensive study of both human and methodological factors influencing 8-oxodG measurement, providing key information for future studies with this important biomarker. Conclusion: ELISA variability is greater than chromatographic assay variability, and cannot determine absolute levels of 8-oxodG. Use of standardized calibrants greatly improves intra-technique agreement and, for the chromatographic assays, importantly allows integration of results for pooled analyses. If 24 h samples are not feasible, creatinine-or SG-adjusted first morning samples are recommended.
BackgroundThe 'exposome' represents the accumulation of all environmental exposures across a lifetime. Top-down strategies are required to assess something this comprehensive, and could transform our understanding of how environmental factors affect human health. Metabolic profiling (metabonomics/metabolomics) defines an individual's metabolic phenotype, which is influenced by genotype, diet, lifestyle, health and xenobiotic exposure, and could also reveal intermediate biomarkers for disease risk that reflect adaptive response to exposure. We investigated changes in metabolism in volunteers living near a point source of environmental pollution: a closed zinc smelter with associated elevated levels of environmental cadmium.MethodsHigh-resolution 1H NMR spectroscopy (metabonomics) was used to acquire urinary metabolic profiles from 178 human volunteers. The spectral data were subjected to multivariate and univariate analysis to identify metabolites that were correlated with lifestyle or biological factors. Urinary levels of 8-oxo-deoxyguanosine were also measured, using mass spectrometry, as a marker of systemic oxidative stress.ResultsSix urinary metabolites, either associated with mitochondrial metabolism (citrate, 3-hydroxyisovalerate, 4-deoxy-erythronic acid) or one-carbon metabolism (dimethylglycine, creatinine, creatine), were associated with cadmium exposure. In particular, citrate levels retained a significant correlation to urinary cadmium and smoking status after controlling for age and sex. Oxidative stress (as determined by urinary 8-oxo-deoxyguanosine levels) was elevated in individuals with high cadmium exposure, supporting the hypothesis that heavy metal accumulation was causing mitochondrial dysfunction.ConclusionsThis study shows evidence that an NMR-based metabolic profiling study in an uncontrolled human population is capable of identifying intermediate biomarkers of response to toxicants at true environmental concentrations, paving the way for exposome research.
Human exposure to polycyclic aromatic hydrocarbons (PAHs) from sources such as industrial or urban air pollution, tobacco smoke and cooked food is not confined to a single compound, but instead to mixtures of different PAHs. The interaction of different PAHs may lead to additive, synergistic or antagonistic effects in terms of DNA adduct formation and carcinogenic activity resulting from changes in metabolic activation to reactive intermediates and DNA repair. The development of a targeted DNA adductomic approach using liquid chromatography/tandem mass spectrometry (LC/MS/MS) incorporating software-based peak picking and integration for the assessment of exposure to mixtures of PAHs is described. For method development PAH-modified DNA samples were obtained by reaction of the anti-dihydrodiol epoxide metabolites of benzo[a]pyrene, benzo[b]fluoranthene, dibenzo[a,l]pyrene (DB[a,l]P) and dibenz[a,h]anthracene with calf thymus DNA in vitro and enzymatically hydrolysed to 2'-deoxynucleosides. Positive LC/electrospray ionisation (ESI)-MS/MS collision-induced dissociation product ion spectra data showed that the majority of adducts displayed a common fragmentation for the neutral loss of 116 u (2'-deoxyribose) resulting in a major product ion derived from the adducted base. The exception was the DB[a,l]P dihydrodiol epoxide adduct of 2'-deoxyadenosine which resulted in major product ions derived from the PAH moiety being detected. Specific detection of mixtures of PAH-adducted 2'-deoxynucleosides was achieved using online column-switching LC/MS/MS in conjunction with selected reaction monitoring (SRM) of the [M+H](+) to [M+H-116](+) transition plus product ions derived from the PAH moiety for improved sensitivity of detection and a comparison was made to detection by constant neutral loss scanning. In conclusion, different PAH DNA adducts were detected by employing SRM [M+H-116](+) transitions or constant neutral loss scanning. However, for improved sensitivity of detection optimised SRM transitions relating to the PAH moiety product ions are required for certain PAH DNA adducts for the development of targeted DNA adductomic methods.
Exposure to arsenic (As), cadmium (Cd), and lead (Pb) may generate oxidative stress, which can be assessed by 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in urine, a sensitive marker of oxidatively damaged DNA. We have evaluated oxidative stress induced by chronic mixed exposure to As, Cd, and Pb, as well as the influence of As metabolism and nutritional status, i.e., levels of ferritin (Ft), selenium (Se), zinc (Zn), and manganese (Mn) and body weight. 8-OxodG was measured in urine from 212 women in early pregnancy from Matlab, in rural Bangladesh, using LC-MS/MS. Cd and Pb were analyzed in urine and erythrocytes, and Se, Mn, and Zn were analyzed in erythrocytes, all by ICPMS. As and As metabolites were analyzed in urine by HPLC-ICPMS. Ferritin was analyzed in plasma by radioimmunoassay. The median concentration of 8-oxodG was 8.3 nmol/L (adjusted for specific gravity), range 1.2-43, corresponding to a median of 4.7 microg/g creatinine, range 1.8-32. 8-OxodG was positively associated with urinary Cd (beta=0.32, p< 0.001), urinary As (beta=0.0007, p=0.001), the fraction of the monomethylated arsenic metabolite in urine (beta=0.0026, p=0.004), and plasma Ft (beta=0.20, p< 0.001). A joint effect was seen for urinary Cd and As, but whether this effect was additive or multiplicative was difficult to discern.
In order to achieve a better outcome for pancreatic cancer patients, reliable biomarkers are required which allow for improved diagnosis. These may emanate from a more detailed molecular understanding of the aggressive nature of this disease. Having previously reported that Notch3 activation appeared to be associated with more aggressive disease, we have now examined components of this pathway (Notch1, Notch3, Notch4, HES-1, HEY-1) in more detail in resectable (n = 42) and non-resectable (n = 50) tumours compared to uninvolved pancreas. All three Notch family members were significantly elevated in tumour tissue, compared to uninvolved pancreas, with expression maintained within matched lymph node metastases. Furthermore, significantly higher nuclear expression of Notch1, -3 and -4, HES-1, and HEY-1 (all p≤0.001) was noted in locally advanced and metastatic tumours compared to resectable cancers. In survival analyses, nuclear Notch3 and HEY-1 expression were significantly associated with reduced overall and disease-free survival following tumour resection with curative intent, with nuclear HEY-1 maintaining independent prognostic significance for both outcomes on multivariate analysis. These data further support a central role for Notch signalling in pancreatic cancer and suggest that nuclear expression of Notch3 and its target gene, HEY-1, merit validation in biomarker panels for diagnosis, prognosis and treatment efficacy. A peptide fragment of Notch3 was detected in plasma from patients with inoperable pancreatic cancer, but due to wide inter-individual variation, mean levels were not significantly different compared to age-matched controls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.