Background: As the COVID-19 pandemic continues to spread, early, ideally real-time, identification of SARS-CoV-2 infected individuals is pivotal in interrupting infection chains. Volatile organic compounds produced during respiratory infections can cause specific scent imprints, which can be detected by trained dogs with a high rate of precision. Methods: Eight detection dogs were trained for 1 week to detect saliva or tracheobronchial secretions of SARS-CoV-2 infected patients in a randomised, double-blinded and controlled study. Results: The dogs were able to discriminate between samples of infected (positive) and non-infected (negative) individuals with average diagnostic sensitivity of 82.63% (95% confidence interval [CI]: 82.02-83.24%) and specificity of 96.35% (95% CI: 96.31-96.39%). During the presentation of 1012 randomised samples, the dogs achieved an overall average detection rate of 94% (±3.4%) with 157 correct indications of positive, 792 correct rejections of negative, 33 incorrect indications of negative or incorrect rejections of 30 positive sample presentations. Conclusions: These preliminary findings indicate that trained detection dogs can identify respiratory secretion samples from hospitalised and clinically diseased SARS-CoV-2 infected individuals by discriminating between samples from SARS-CoV-2 infected patients and negative controls. This data may form the basis for the reliable screening method of SARS-CoV-2 infected people.
Background
The main strategy to contain the current SARS-CoV-2 pandemic remains to implement a comprehensive testing, tracing and quarantining strategy until vaccination of the population is adequate. Scent dogs could support current testing strategies.
Methods
Ten dogs were trained for 8 days to detect SARS-CoV-2 infections in beta-propiolactone inactivated saliva samples. The subsequent cognitive transfer performance for the recognition of non-inactivated samples were tested on three different body fluids (saliva, urine, and sweat) in a randomised, double-blind controlled study.
Results
Dogs were tested on a total of 5242 randomised sample presentations. Dogs detected non-inactivated saliva samples with a diagnostic sensitivity of 84% (95% CI: 62.5–94.44%) and specificity of 95% (95% CI: 93.4–96%). In a subsequent experiment to compare the scent recognition between the three non-inactivated body fluids, diagnostic sensitivity and specificity were 95% (95% CI: 66.67–100%) and 98% (95% CI: 94.87–100%) for urine, 91% (95% CI: 71.43–100%) and 94% (95% CI: 90.91–97.78%) for sweat, 82% (95% CI: 64.29–95.24%), and 96% (95% CI: 94.95–98.9%) for saliva respectively.
Conclusions
The scent cognitive transfer performance between inactivated and non-inactivated samples as well as between different sample materials indicates that global, specific SARS-CoV-2-associated volatile compounds are released across different body secretions, independently from the patient’s symptoms. All tested body fluids appear to be similarly suited for reliable detection of SARS-CoV-2 infected individuals.
SummaryObjectiveMesial temporal lobe epilepsy (TLE) with hippocampal sclerosis is a predominant form of acquired epilepsy, characterized by recurrent simple and complex partial seizures that are often resistant to treatment. Mice developing spontaneous recurrent nonconvulsive and convulsive seizures after intrahippocampal injection of the excitotoxic glutamate agonist kainate are thought to represent a valuable model of mesial TLE. Epileptic electroencephalogram (EEG) activity recorded in this model from the kainate focus in the ipsilateral hippocampus is resistant to antiseizure drugs such as carbamazepine (CBZ). We compared the efficacy of CBZ in this model in two different mouse strains (FVB/N and NMRI). Furthermore, we evaluated whether changes in the definition of electrographic seizures affect the antiseizure efficacy of CBZ.MethodsAs in previous studies, two types of epileptic EEG activity were defined: high‐voltage sharp waves (HVSWs) and hippocampal paroxysmal discharges (HPDs). The characteristics of these paroxysmal EEG events in epileptic mice were compared with EEG criteria for nonconvulsive seizures in patients. For HVSWs, different spike frequencies, interevent intervals, and amplitudes were used as inclusion and exclusion criteria. In addition to CBZ, some experiments were performed with diazepam (DZP) and phenobarbital (PB).ResultsFemale epileptic FVB/N mice predominantly exhibited frequent HVSWs, but only infrequent HPDs or secondarily generalized convulsive seizures. Slight changes in HVSW definition determined whether they were resistant or responsive to CBZ. Male NMRI mice exhibited both HVSWs and HPDs. HVSWs were more resistant than HPDs to suppression by CBZ. Both types of epileptic EEG activity were rapidly suppressed by DZP and PB.SignificanceThe data demonstrate that focal electrographic seizures in the intrahippocampal kainate mouse model are less resistant than previously thought. Both mouse strain and the criteria chosen for definition of EEG seizures determine whether such seizures are drug‐resistant or ‐responsive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.