SUMMARYIn view of the regulatory function of the thalamus in the sleep-wake cycle, the impact of deep brain stimulation (DBS) of the anterior nucleus thalami (ANT) on sleep was assessed in a small consecutive cohort of epilepsy patients with standardized polysomnography (PSG). In nine patients treated with ANT-DBS (voltage 5 V, frequency 145 Hz, cyclic mode), the number of arousals during stimulation and nonstimulation periods, neuropsychiatric symptoms (npS), and seizure frequency were determined. Electroclinical arousals were triggered in 14.0 to 67.0% (mean 42.4 AE SD 16.8%) of all deep brain stimuli. Six patients reported npS. Nocturnal DBS voltages were reduced in eight patients (one patient without npS refused) and PSGs were repeated. Electroclinical arousals occurred between 1.4 and 6.7 (mean 3.3 AE 1.7) times more frequently during stimulation periods compared to nonstimulation periods; the number of arousals positively correlated with the level of DBS voltage (range 1 V to 5 V) (Spearman 0 s rank coefficient 0.53121; p < 0.05). No patient experienced seizure deterioration and four patients reported remission of npS. This case-cohort study provides evidence that ANT-DBS interrupts sleep in a voltage-dependent manner, thus putatively resulting in an increase of npS. Reduction of nocturnal DBS voltage seems to lead to improvement of npS without hampering efficacy of ANT-DBS.
The aim of epilepsy surgery in patients with focal, pharmacoresistant epilepsies is to remove the complete epileptogenic zone to achieve long-term seizure freedom. In addition to a spectrum of diagnostic methods, magnetoencephalography focus localization is used for planning of epilepsy surgery. We present results from a retrospective observational cohort study of 1000 patients, evaluated using magnetoencephalography at the University Hospital Erlangen over the time span of 28 years. One thousand consecutive cases were included in the study, evaluated at the University Hospital Erlangen between 1990 and 2018. All patients underwent magnetoencephalography as part of clinical workup for epilepsy surgery. Of these, 405 underwent epilepsy surgery after magnetoencephalography, with postsurgical follow-ups of up to 20 years. Sensitivity for interictal epileptic activity was evaluated, in addition to concordance of localization with the consensus of presurgical workup on a lobar level. We evaluate magnetoencephalography characteristics of patients who underwent epilepsy surgery versus patients who did not proceed to surgery. In operated patients, resection of magnetoencephalography localizations were related to postsurgical seizure outcomes, including long-term results after several years. In comparison, association of lesionectomy with seizure outcomes was analysed. Measures of diagnostic accuracy were calculated for magnetoencephalography resection and lesionectomy. Sensitivity for interictal epileptic activity was 72% with significant differences between temporal and extra-temporal lobe epilepsy. Magnetoencephalography was concordant with the presurgical consensus in 51% and showed additional or more focal involvement in an additional 32%. Patients who proceeded to surgery showed a significantly higher percentage of monofocal magnetoencephalography results. Complete magnetoencephalography resection was associated with significantly higher chances to achieve seizure freedom in the short and long-term. Diagnostic accuracy was significant in temporal and extra-temporal lobe cases, but was significantly higher in extra-temporal lobe epilepsy (diagnostic odds ratios of 4.4 and 41.6). Odds ratios were also higher in non-lesional versus lesional cases (42.0 versus 6.2). The results show that magnetoencephalography provides non-redundant information, which significantly contributes to patient selection, focus localization and ultimately long-term seizure freedom after epilepsy surgery. Specifically in extra-temporal lobe epilepsy and non-lesional cases, magnetoencephalography provides excellent accuracy.
The anterior thalamic nucleus (ATN) is thought to play an important role in a brain network involving the hippocampus and neocortex, which enables human memories to be formed. However, its small size and location deep within the brain have impeded direct investigation in humans with non-invasive techniques. Here we provide direct evidence for a functional role for the ATN in memory formation from rare simultaneous human intrathalamic and scalp electroencephalogram (EEG) recordings from eight volunteering patients receiving intrathalamic electrodes implanted for the treatment of epilepsy, demonstrating real-time communication between neocortex and ATN during successful memory encoding. Neocortical-ATN theta oscillatory phase synchrony of local field potentials and neocortical-theta-to-ATN-gamma cross-frequency coupling during presentation of complex photographic scenes predicted later memory for the scenes, demonstrating a key role for the ATN in human memory encoding.DOI:http://dx.doi.org/10.7554/eLife.05352.001
Standardized terminology for computer-based assessment and reporting of EEG has been previously developed in Europe. The International Federation of Clinical Neurophysiology established a taskforce in 2013 to develop this further, and to reach international consensus. This work resulted in the second, revised version of SCORE (Standardized Computer-based Organized Reporting of EEG), which is presented in this paper. The revised terminology was implemented in a software package (SCORE EEG), which was tested in clinical practice on 12,160 EEG recordings. Standardized terms implemented in SCORE are used to report the features of clinical relevance, extracted while assessing the EEGs. Selection of the terms is context sensitive: initial choices determine the subsequently presented sets of additional choices. This process automatically generates a report and feeds these features into a database. In the end, the diagnostic significance is scored, using a standardized list of terms. SCORE has specific modules for scoring seizures (including seizure semiology and ictal EEG patterns), neonatal recordings (including features specific for this age group), and for Critical Care EEG Terminology. SCORE is a useful clinical tool, with potential impact on clinical care, quality assurance, data-sharing, research and education.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.