BackgroundMutations in SACS, leading to autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS), have been identified as a frequent cause of recessive early-onset ataxia around the world. Here we aimed to enlarge the spectrum of SACS mutations outside Quebec, to establish the pathogenicity of novel variants, and to expand the clinical and imaging phenotype.MethodsSequencing of SACS in 22 patients with unexplained early-onset ataxia, assessment of novel SACS variants in 3.500 European control chromosomes and extensive phenotypic investigations of all SACS carriers.ResultsWe identified 11 index patients harbouring 17 novel SACS variants. 9/11 patients harboured two variants of at least probable pathogenicity which were not observed in controls and, in case of missense mutations, were located in highly conserved domains. These 9 patients accounted for at least 11% (9/83) in our series of unexplained early onset ataxia subjects. While most patients (7/9) showed the classical ARSACS triad, the presenting phenotype reached from pure neuropathy (leading to the initial diagnosis of Charcot-Marie-Tooth disease) in one subject to the absence of any signs of neuropathy in another. In contrast to its name “spastic ataxia”, neither spasticity (absent in 2/9=22%) nor extensor plantar response (absent in 3/9=33%) nor cerebellar ataxia (absent in 1/9=11%) were obligate features. Autonomic features included urine urge incontinence and erectile dysfunction. Apart from the well-established MRI finding of pontine hypointensities, all patients (100%) showed hyperintensities of the lateral pons merging into the (thickened) middle cerebellar peduncles. In addition, 63% exhibited bilateral parietal cerebral atrophy, and 63% a short circumscribed thinning of the posterior midbody of the corpus callosum. In 2 further patients with differences in important clinical features, VUS class 3 variants (c.1373C>T [p.Thr458Ile] and c.2983 G>T [p.Val995Phe]) were identified. These variants were, however, also observed in controls, thus questioning their pathogenic relevance.ConclusionsWe here demonstrate that each feature of the classical ARSACS triad (cerebellar ataxia, spasticity and peripheral neuropathy) might be missing in ARSACS. Nevertheless, characteristic MRI features – which also extend to supratentorial regions and involve the cerebral cortex – will help to establish the diagnosis in most cases.
Chediak-Higashi syndrome (CHS) is a rare autosomal recessive disorder characterized by severe immunologic defects, reduced pigmentation, bleeding tendency, and progressive neurological dysfunction. Most patients present in early childhood and die unless treated by bone marrow transplantation. About 10-15% of patients exhibit a much milder clinical phenotype and survive to adulthood, but develop progressive and often fatal neurological dysfunction. Very rare patients exhibit an intermediate adolescent CHS phenotype, presenting with severe infections in early childhood, but a milder course by adolescence, with no accelerated phase. Here, we describe the organization and genomic DNA sequence of the CHS1 gene and mutation analysis of 21 unrelated patients with the childhood, adolescent, and adult forms of CHS. In patients with severe childhood CHS, we found only functionally null mutant CHS1 alleles, whereas in patients with the adolescent and adult forms of CHS we also found missense mutant alleles that likely encode CHS1 polypeptides with partial function. Together, these results suggest an allelic genotype-phenotype relationship among the various clinical forms of CHS.
Partial SPAST deletions, but not SPAST amplifications and SPG3A copy number aberrations, represent an underestimated cause of autosomal dominant hereditary spastic paraplegia. Partial SPAST deletions are likely to act via haploinsufficiency.
The spinocerebellar ataxias (SCAs) with autosomal dominant inheritance are a group of neurodegenerative disorders with overlapping as well as highly variable phenotypes. Genetically, at least 25 different loci have been identified. Seven SCAs are caused by CAG trinucleotide repeat expansions, for 13 the chromosomal localization is known solely. Recently, a missense mutation in the fibroblast growth factor 14 gene (FGF14) has been reported in a Dutch family with a new dominantly inherited form of SCA. To evaluate the frequency of mutations in the FGF14 gene, we performed molecular genetic analyses for the five exons in 208 nonrelated familial ataxia cases and 208 control samples. In one patient, we detected a novel single base pair deletion in exon 4 (c.487delA) creating a frameshift mutation. In addition, we found DNA polymorphisms in exon 1a, 4, and 5, an amino-acid exchange at position 124, as well as a single-nucleotide polymorphism in the 3 0 -untranslated region of exon 5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.