These authors contributed equally to the work. SUMMARYEngineered nucleases can be used to induce site-specific double-strand breaks (DSBs) in plant genomes. Thus, homologous recombination (HR) can be enhanced and targeted mutagenesis can be achieved by error-prone non-homologous end-joining (NHEJ). Recently, the bacterial CRISPR/Cas9 system was used for DSB induction in plants to promote HR and NHEJ. Cas9 can also be engineered to work as a nickase inducing single-strand breaks (SSBs). Here we show that only the nuclease but not the nickase is an efficient tool for NHEJ-mediated mutagenesis in plants. We demonstrate the stable inheritance of nuclease-induced targeted mutagenesis events in the ADH1 and TT4 genes of Arabidopsis thaliana at frequencies from 2.5 up to 70.0%. Deep sequencing analysis revealed NHEJ-mediated DSB repair in about a third of all reads in T1 plants. In contrast, applying the nickase resulted in the reduction of mutation frequency by at least 740-fold. Nevertheless, the nickase is able to induce HR at similar efficiencies as the nuclease or the homing endonuclease I-SceI. Two different types of somatic HR mechanisms, recombination between tandemly arranged direct repeats as well as gene conversion using the information on an inverted repeat could be enhanced by the nickase to a similar extent as by DSB-inducing enzymes. Thus, the Cas9 nickase has the potential to become an important tool for genome engineering in plants. It should not only be applicable for HR-mediated gene targeting systems but also by the combined action of two nickases as DSB-inducing agents excluding off-target effects in homologous genomic regions.
Photosynthetic organisms provide food and energy for nearly all life on Earth, yet half of their protein-coding genes remain uncharacterized 1 , 2 . Characterization of these genes could be greatly accelerated by new genetic resources for unicellular organisms. Here, we generated a genome-wide, indexed library of mapped insertion mutants for the unicellular alga Chlamydomonas reinhardtii . The 62,389 mutants in the library, covering 83% of nuclear, protein-coding genes, are available to the community. Each mutant contains unique DNA barcodes, allowing the collection to be screened as a pool. We performed a genome-wide survey of genes required for photosynthesis, which identified 303 candidate genes. Characterization of one of these genes, the conserved predicted phosphatase-encoding gene CPL3 , showed it is important for accumulation of multiple photosynthetic protein complexes. Notably, 21 of the 43 highest-confidence genes are novel, opening new opportunities for advances in our understanding of this biogeochemically fundamental process. This library will accelerate the characterization of thousands of genes in algae, plants and animals.
These authors contributed equally to this work. SUMMARYThe CRISPR/Cas nuclease is becoming a major tool for targeted mutagenesis in eukaryotes by inducing double-strand breaks (DSBs) at pre-selected genomic sites that are repaired by non-homologous end joining (NHEJ) in an error-prone way. In plants, it could be demonstrated that the Cas9 nuclease is able to induce heritable mutations in Arabidopsis thaliana and rice. Gene targeting (GT) by homologous recombination (HR) can also be induced by DSBs. Using a natural nuclease and marker genes, we previously developed an in planta GT strategy in which both a targeting vector and targeting locus are activated simultaneously via DSB induction during plant development. Here, we demonstrate that this strategy can be used for natural genes by CRISPR/Cas-mediated DSB induction. We were able to integrate a resistance cassette into the ADH1 locus of A. thaliana via HR. Heritable events were identified using a PCR-based genotyping approach, characterised by Southern blotting and confirmed on the sequence level. A major concern is the specificity of the CRISPR/Cas nucleases. Off-target effects might be avoided using two adjacent sgRNA target sequences to guide the Cas9 nickase to each of the two DNA strands, resulting in the formation of a DSB. By amplicon deep sequencing, we demonstrate that this Cas9 paired nickase strategy has a mutagenic potential comparable with that of the nuclease, while the resulting mutations are mostly deletions. We also demonstrate the stable inheritance of such mutations in A. thaliana.
SUMMARYThe application of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system of Streptococcus pyogenes (SpCas9) is currently revolutionizing genome engineering in plants. However, synthetic plant biology will require more complex manipulations of genomes and transcriptomes. The simultaneous addressing of different specific genomic sites with independent enzyme activities within the same cell is a key to this issue. Such approaches can be achieved by the adaptation of additional bacterial orthologues of the CRISPR/Cas system for use in plant cells. Here, we show that codon-optimised Cas9 orthologues from Streptococcus thermophilus (St1Cas9) and Staphylococcus aureus (SaCas9) can both be used to induce error-prone non-homologous end-joining-mediated targeted mutagenesis in the model plant Arabidopsis thaliana at frequencies at least comparable to those that have previously been reported for the S. pyogenes CRISPR/Cas system. Stable inheritance of the induced targeted mutations of the ADH1 gene was demonstrated for both St1Cas9-and SaCas9-based systems at high frequencies. We were also able to demonstrate that the SaCas9 and SpCas9 proteins enhance homologous recombination via the induction of double-strand breaks only in the presence of their species-specific single guide (sg) RNAs. These proteins are not prone to inter-species interference with heterologous sgRNA expression constructs. Thus, the CRISPR/Cas systems of S. pyogenes and S. aureus should be appropriate for simultaneously addressing different sequence motifs with different enzyme activities in the same plant cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.