Preface to the first editionIn recent years new topological methods, especially the theory of sheaves founded by J. LERAY, have been applied successfully to algebraic geometry and to the theory of functions of several complex variables.H. CARTAN and J.-P. SERRE have shown how fundamental theorems on holomorphically complete manifolds (STEIN manifolds) can be formulated in terms of sheaf theory. These theorems imply many facts of function theory because the domains of holomorphy are holomorphically complete. They can also be applied to algebraic geometry because the complement of a hyperplane section of an algebraic manifold is holomorphically complete. J.-P. SERRE has obtained important results on algebraic manifolds by these and other methods. Recently many of his results have been proved for algebraic varieties defined over a field of arbitrary characteristic. K. KODAIRA and D. C. SPENCER have also applied sheaf theory to algebraic geometry with great success. Their methods differ from those of SERRE in that they use techniques from differential geometry (harmonic integrals etc.) but do not make any use of the theory of STEIN manifolds. M. F. ATIYAH and W. V. D. HODGE have dealt successfully with problems on integrals of the second kind on algebraic manifolds with the help of sheaf theory.I was able to work together with K. KODAIRA and D. C. SPENCER during a stay at the Institute for Advanced Study at Princeton from 1952 to 1954. My aim was to apply, alongside the theory of sheaves, the theory of characteristic classes and the new results of R. THOM on differentiable manifolds. In connection with the applications to algebraic geometry I studied the earlier research of J. A. TODD. During this time at the Institute I collaborated with A. BOREL, conducted a long correspondence with THOM and was able to see the correspondence of KODAIRA and SPENCER with SERRE. I thus received much stimulating help at Princeton and I wish to express my sincere thanks to A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.