Activation of the "lipoxygenase pathway" in plants gives rise to a series of products derived from fatty acids. Analysis by gas chromatography-mass spectroscopy of volatile products produced by Phaseolus vulgaris (1.) cv Red Mexican leaves during a hypersensitive resistance response (HR) to the plant pathogenic bacterium Pseudomonas syringae pv phaseolicola showed evolution of several lipid-derived volatiles, including cis-3-hexenol and trans-2-hexena1, which arise from the 13-hydroperoxide of linolenic acid. These compounds were not produced in detectable amounts by buffer-inoculated leaves, nor did they evolve to such a high degree during comparable stages of the susceptible response. The absence of frans-2,cis-6-nonadienal, a product expected from 9-hydroperoxide of linolenic acid, suggests that lipid peroxidation during the HR proceeded primarily enzymically via bean lipoxygenase, which produces the 13-hydroperoxide, and not via autoxidative processes. The effects of trans-2-hexena1, cis-3-hexeno1, and traumatic acid on P.s pv phaseolicola were investigated. trans-2-Hexenal appeared to be highly bactericidal at low concentrations, whereas cis-3-hexenol was bactericidal only at much higher concentrations. Traumatic acid appeared to have no effect on P.s. pv. phaseolicola at the concentrations tested. These results demonstrate that during plant defense responses against microbial attack, several lipidderived compounds are produced by the plant, some of which possess antimicrobial activity and conceivably are involved in plant disease resistance. The time of production of these substances, in amounts that would be expected to be antibacterial in vitro, correlated with a slowing down of the growth rate of bacteria in the leaves and was seen at a time before the accumulation of isoflavonoid phytoalexins in the host.
2The majority of all biologically caused taste-and-odor outbreaks in drinking water characterized worldwide are caused by microbial production of (Ϫ)-geosmin [(Ϫ)-(4S,4aS,8aR)-4,8a-dimethyloctahydronaphthalen-4a-ol] and (Ϫ)-2-methylisoborneol (2-MIB) {(1R-exo)-1,2,7,7-tetramethylbicyclo[2.2.1]heptan-2-ol}. Since they were first identified in the early 1960s, these two earthy-muddy-smelling metabolites have been the focus of considerable research, which has collectively produced over 400 scientific articles, reports, websites, and conference proceedings. Yet despite this substantial body of knowledge, geosmin and 2-MIB remain poorly understood throughout much of the water industry, and misconceptions which impede the prediction, treatment, and control of these volatile organic compounds (VOCs) persist. This paper reviews salient aspects of our current knowledge on the sources and properties of geosmin and 2-MIB which are essential to understanding and managing drinking water malodors. In particular, we highlight some key factors regulating the storage and release of these compounds by cells. These important factors are often overlooked and may contribute to some of the apparent ambiguity of many taste-and-odor outbreaks.
Summary 1. Planktothrix rubescens is the dominant photoautotrophic organism in Lake Zürich, a prealpine, deep, mesotrophic freshwater lake with an oxic hypolimnion. Over long periods of the year, P. rubescens accumulates at the metalimnion and growth occurs in situ at irradiance near the photosynthesis compensation point. Experiments were conducted to evaluate the contribution of photoheterotrophy, heterotrophy and light‐dependent uptake of nitrogenous organic compounds to the carbon and nitrogen budget of this cyanobacterium under conditions of restricted availability of light quanta. 2. We used both purified natural populations of P. rubescens from the depth of 9 m and an axenic culture grown under low irradiance at 11 μmol m−2 s−1 on a light : dark cycle (10 : 14 h) to determine the uptake rates of various amino acids, urea, glucose, fructose, acetate and inorganic carbon. The components were added to artificial lake water in low amounts that simulated the naturally occurring potential concentrations. 3. The uptake rates of acetate and amino acids (glycine, serine, glutamate and aspartate) were strongly enhanced at low irradiance as compared with the dark. However, no difference was observed in the uptake of arginine, which was taken up at high rates under both treatments. The uptake rates of glucose, fructose and urea were very low under all conditions. Similar results were obtained for both axenic P. rubescens and for purified natural populations of P. rubescens that were separated from bacterioplankton and other phytoplankton. 4. Metalimnetic P. rubescens that was stratified at low irradiance for weeks exhibited much higher uptake rates than filaments that were entrained in the deepening surface mixed layer and experienced higher irradiance. The added organic compounds contributed up to 62% to the total carbon uptake of metalimnetic P. rubescens. On the basis of a molar C : N ratio of 4.9, the nitrogen uptake as organic compounds satisfied up to 84% of the nitrogen demand. 5. The experiments indicate that photoheterotrophy and light‐dependent uptake of nitrogenous organic compounds may contribute significantly to the carbon and nitrogen budget of filaments at low irradiance typical for growth of P. rubescens in the metalimnion and at the bottom of the surface mixed layer.
Acute grazer toxicity of freshwater diatom biofilms was determined using Thamnocephalus platyurus Packard, an anostracan grazer, as the bioassay organism. The diatoms exhibited toxicity when the cells of the biofilm were freeze-thawed before the assay. The toxicity could be extracted from the biofilms with methanol and acetone, and only minimal toxicity was left in the insoluble residue. Bioassay-guided HPLC separation of the methanolic extract was performed to trace the most toxic components. Analysis by UV spectrometry, gas chromatography, and mass spectrometry showed that 5,8,11,14,17-eicosapentaenoic acid was responsible for most grazer toxicity. The 24-h LC 50 of this polyunsaturated fatty acid was 34 M in the Thamnocephalus platyurus bioassay. The concentrations of other free fatty acids were not high enough to contribute significantly to the toxicity. Procedures that affected the integrity of the cells (e.g. solvent extraction, freezing and thawing, osmotic stress by addition of 20% NaCl, or grinding the cells in a mortar) were taken as model reactions for grazing and had the common effect of resulting in a dramatic increase of free polyunsaturated and saturated fatty acids. Under these conditions, about 30% of the total fatty acids of the diatoms was transformed from the bound into the free form. The time necessary for liberation was very short. With the exception of 5,8,11,14,17-eicosapentaenoic acid, which continued to be liberated, the hydrolysis of the other fatty acids was terminated less than 1 min after initiating the reaction. The classical extraction procedures using methanol and other solvents led to the appearance of a high percentage of free fatty acids in live cells. Treatment of biofilms with these solvents did not stop the hydrolysis of lipids initiated by the disintegration of the cells. However, boiling acetone completely suppressed the hydrolytic reactions, and free polyunsaturated fatty acids were not detected in live biofilm organisms, although nontoxic saturated fatty acids were present in moderate concentrations. These results were interpreted as an indication that the frequently reported existence of free polyunsaturated fatty acids in live biomass is an analytical artifact.
Two new modified hexacyclopeptides, aerucyclamides A and B, were isolated from the toxic freshwater cyanobacterium Microcystis aeruginosa PCC 7806. The constitution was assigned by spectroscopic methods, and the configuration determined by chemical degradation and analysis by Marfey's method combined with chemical synthesis. Synthetic aerucyclamide B was obtained through oxidation of aerucyclamide A (MnO2, benzene). The aerucyclamides were found to be toxic to the freshwater crustacean Thamnocephalus platyurus, exhibiting LC50 values for congeners A and B of 30.5 and 33.8 microM, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.