The present study establishes the beneficial effects of the continuous phytogenic supplementation reflected in reduced diarrhea and mortality and higher egg productivity under normal conditions and during a natural outbreak of Spotty Liver Disease. Our data points to the importance of phytogen-driven alteration of microbial pathogenicity and fitness-related functional capabilities revealed on the commercial layer farm.
Consumer push towards open and free-range production systems makes biosecurity on farms challenging, leading to increased disease and animal welfare issues. Phytogenic products are increasingly becoming a viable alternative for the use of antibiotics in livestock production. Here we present a study of the effects of commercial phytogenic supplement containing menthol, carvacrol and carvone on intestinal microbiota of layer hens, microbial functional capacity, and intestinal morphology. A total of 40,000 pullets were randomly assigned to two sides of the experimental shed. Growth performance, mortality, egg production and egg quality parameters were recorded throughout the trial period (18–30 weeks of age). Microbial community was investigated using 16S amplicon sequencing and functional difference using metagenomic sequencing. Phytogen supplemented birds had lower mortality and number of dirty eggs, and their microbial communities showed reduced richness. Although phytogen showed the ability to control the range of poultry pathogens, its action was not restricted to pathogenic taxa, and it involved functional remodelling the intestinal community towards increased cofactor production, heterolactic fermentation and salvage and recycling of metabolites. The phytogen did not alter the antimicrobial resistance profile or the number of antibiotic resistance genes. The study indicates that phytogenic supplementation can mimic the action of antibiotics in altering the gut microbiota and be used as their alternative in industry-scale layer production.
Poultry production is among the most challenging industries for pathogen control. High animal density and abundance of faecal material demand strict biosecurity measures and continual vigilance in monitoring animal health parameters. Despite this vigilance, dealing with disease outbreaks is a part of farmers’ routines. Phytogenic feed additives comprised of herbs, spices, essential oils, and oleoresins have potent antimicrobial and anti-inflammatory actions. Related studies are gaining substantial interest in human and animal health worldwide. In this study, a commercial blend phytogenic feed additive was supplemented to layers in an industrial free-range production system with 20,000 birds in both control and treatment groups. At the end of the trial, the ileum tissue was sampled for RNAseq transcriptomic analysis to study the host reaction to the supplement. Phytogenic supplement significantly inhibited four cholesterol-related pathways and reduced the Arteriosclerosis disease category towards improved cardiovascular health. The supplemented birds exhibited reduced disease susceptibility for 26 cancer categories with p-values in the range from 5.23 × 10−4 to 1.02 × 10−25. Major metabolic shifts in Lipid metabolism in combination with Carbohydrate metabolism have resulted in a decrease in the Obesity category, altering the ratio of fat and carbohydrate metabolism toward lower fat storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.