In a glass house: Silica-encapsulated self-assembled monolayers (SAMs) on tunable gold/silver nanoshells were used as labels for surface-enhanced Raman scattering (SERS). This concept combines the spectroscopic advantages arising from maximum surface coverage and uniform molecular orientation of the Raman reporter molecules within the complete monolayer together with the high chemical and mechanical stability of the glass shell.
The molar extinction coefficient of single-wall carbon nanotubes (SWNTs) is determined using fluorescence tagging, as well as atomic force microscopy (AFM) imaging, which facilitate the correlation of nanotube concentrations with absorption spectra. Tagging of SWNTs is achieved using fluorescence-labeled single-strand DNA oligomers as the dispersion additive, while AFM imaging is used to determine the mass of SWNTs in the retentate of vacuum-filtered colloidal SWNT suspensions. The resulting absorption cross section for the first exciton transition of (6,5) nanotubes of 1.7 × 10–17 cm2 per C-atom corresponds to an extinction coefficient of (4400 ± 1000) M–1·cm–1, which is equivalent to an oscillator strength of 0.010 per carbon atom.
Doping by chemical or physical means is key for the development of future semiconductor technologies. Ideally, charge carriers should be able to move freely in a homogeneous environment. Here, we report on evidence suggesting that excess carriers in electrochemically p-doped semiconducting single-wall carbon nanotubes (s-SWNTs) become localized, most likely due to poorly screened Coulomb interactions with counterions in the Helmholtz layer. A quantitative analysis of blue-shift, broadening, and asymmetry of the first exciton absorption band also reveals that doping leads to hard segmentation of s-SWNTs with intrinsic undoped segments being separated by randomly distributed charge puddles approximately 4 nm in width. Light absorption in these doped segments is associated with the formation of trions, spatially separated from neutral excitons. Acceleration of exciton decay in doped samples is governed by diffusive exciton transport to, and nonradiative decay at charge puddles within 3.2 ps in moderately doped s-SWNTs. The results suggest that conventional band-filling in s-SWNTs breaks down due to inhomogeneous electrochemical doping.
Controlling doping is essential for a successful integration of semiconductor materials into device technologies. However, the assessment of doping levels and the distribution of charge carriers in carbon nanotubes or other nanoscale semiconductor materials is often either limited to a qualitative attribution of being 'high' or 'low' or it is entirely absent. Here, we describe efforts toward a quantitative characterization of doping in redox-or electrochemically doped semiconducting carbon nanotubes (s-SWNTs) using VIS-NIR absorption spectroscopy. We discuss how carrier densities up to about 0.5 nm −1 can be quantified with a sensitivity of roughly one charge per 10 4 carbon atoms assuming in-homogeneous or homogeneous carrier distributions. arXiv:1909.05181v1 [cond-mat.mtrl-sci]
Polymers are widely used for postsynthesis processing, purification, and individualization of single-wall carbon nanotubes (SWNTs) in aqueous or organic solvent environments. Here, the interaction of single-stranded DNA oligomers (ssDNA) and of a polyfluorene copolymer (F8T2) with (6,5) SWNTs was investigated from desorption kinetics and in the case of ssDNA also using adsorption isotherms. Eyring analysis of desorption rate constants reveals a linear increase of activation enthalpies with ssDNA oligomer length until Δdes H ‡ saturates at (155 ± 5) kJ·mol–1 for oligomers exceeding the ssDNA Kuhn length of about 6 nm. The Gibbs energy for desorption of Δdes G ‡ = (96 ± 1) kJ·mol–1 is length-independent because of entropy–enthalpy compensation. The saturation of desorption energies at the high polymer coverages studied here is attributed to incomplete adsorption with typically no more than a single Kuhn segment of a polymer attached to a SWNT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.