Ribozyme‐catalyzed Diels–Alder reactions: Through the use of either D‐ or L‐ribozymes the absolute configuration of product 3 can be controlled. An ee value of >95 % is reached in the reaction between 1 and 2. The hexaethylene glycol residue attached to 1 and 3 is an atavism that stems from the in vitro selection of the ribozyme. Reactions with substrates not containing this residue are also catalyzed, albeit with lower ee values.
Ribozymes have recently been shown to catalyze the stereoselective formation of carbon-carbon bonds between small organic molecules. The interactions of these Diels-Alderase ribozymes with their substrates and products have now been elucidated by chemical substitution analysis by using 44 different, systematically varied analogues. RNA-diene interaction is governed by stacking interactions, while hydrogen bonding and metal ion coordination appear to be less important. The diene has to be an anthracene derivative, and substituents at defined positions are permitted, thereby shedding light on the geometry of the binding site. The dienophile must be a five-membered maleimidyl ring with an unsubstituted reactive double bond, and a hydrophobic side chain makes a major contribution to RNA binding. The ribozyme distinguishes between different enantiomers of chiral substrates and accelerates cycloadditions with both enantio- and diastereoselectivity. The stereochemistry of the reaction is controlled by RNA-diene interactions. The RNA interacts strongly and stereoselectively with the cycloaddition products, requiring several structural features to be present. Taken together, the results highlight the intricacy of ribozyme active sites which can control chemical reaction pathways based on minute differences in substrate stereochemistry and substitution pattern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.