Axonin-I is an axon-associated cell adhesion molecule (AxCAM) of the chicken, which promotes neurite outgrowth by interaction with the AxCAM Ll(G4) of the neuritic membrane. Here we report the cloning and sequence determination of a cDNA encoding axonin-I, Peptides generated by enzymatic cleavage showed similarity to the AxCAM F11. Degenerated polymerase chain reaction (PCR) primers were designed and an axonin-I fragment was amplified from mRNA of embryonic retina. Screening of a cDNA library from embryonic brain resulted in the isolation of a 4.0-kb cDNA insert with an open reading frame of 3108 nucleotides. The deduced polypeptide of 1036 amino acids includes a putative hydrophobic N-terminal signal sequence of 23 or 25 amino acids and a C-terminal hydrophobic sequence of 29 amino acids which is suggestive of sequences serving as signal for the attachment of a glycosyl-phosphatidylinositol (glycosyl-PtdIns) anchor. The putative mature form of axonin-1 comprises six immunoglobulin-like repeats, followed by four fibronectin-type I11 repeats.Axonin-1 exhibits 75% amino acid identity with the AxCAM TAG-1 of the rat, suggesting that it is the chicken homologue of TAG-1. Like TAG-1, axonin-I is glycosyl-PtdIns-anchored to the neuronal membrane; in contrast to TAG-1, it does not exhibit an Arg-Gly-Asp sequence.The interconnection of neurons by processes forming synaptic contacts is one of the crucial developmental stages of neurogenesis. In order to span long distances, bundles of axons are formed in a process which is thought to be driven by the tendency of growing axons to adhere specifically to and elongate along preexisting axons. The consistency with which
Abstract. The neural cell adhesion molecule (N-CAM) engages in diverse functional roles in neural cell interactions. Its extracellular part consists of five Ig-like domains and two fibronectin type III homologous (type III) repeats. To investigate the functional properties of the different structural domains of the molecule in cell interactions and signal transduction to the cell interior, we have synthesized, in a bacterial expression system, the individual domains and tandem sets of individual domains as protein fragments. These protein fragments were tested for their capacity to influence adhesion and spreading of neuronal cell bodies, promote neurite outgrowth, and influence cellular migration patterns from cerebellar microexplants in vitro. Ig-like domains I and II and the combined type III repeats I-II were most efficient for adhesion of neuronal cell bodies, when coated as substrates. Neurite outgrowth was best on the substrate-coated combined type III repeats I-II, followed by the combined Ig-like domains I-V and Ig-like domain I. Spreading of neuronal cell bodies was best on substrate-coated combined type III repeats I-II, followed by Ig-like domain I and the combined Ig-like domains I-V. The cellular migration pattern from cerebellar microexplant cultures plated on a mixture of laminin and poly-L-lysine was modified by Ig-like domains I, III, and IV, while Ig-like domains II and V and the combined type III repeats I-II did not show significant modifications, when added as soluble fragments. Outgrowth of astrocytic processes from the explant core was influenced only by Ig-like domain I. Metabolism of inositol phosphates was strongly increased by Ig-like domain I and less by the Ig-like domains II, III, IV, and V, and not influenced by the combined type HI repeats I-II. Intracellular concentrations of Ca 2 § and pH values were increased only by the Ig-like domains I and II. Intracellular levels of cAMP and GMP were not influenced by any protein fragment. These experiments indicate that different domains of N-CAM subserve different functional roles in cell recognition and signal transduction, and are functionally competent without nervous system-derived carbohydrate structures.
We have previously shown that the neural adhesion molecules L1 and N-CAM influence second messenger systems when triggered with specific antibodies at the surface of the phaeochromocytoma PC12 cell line (Schuch et al., Neuron, 3, 13 - 20, 1989). To determine whether the two molecules are linked to the same intracellular signalling cascades, independent of the cell type expressing them, or whether different neural cell types respond with different signal transduction mechanisms, we have investigated the effects of antibodies to L1 and N-CAM, and the isolated molecules themselves, on second messenger systems in different neural cell types. We have investigated cultures of cerebellar and dorsal root ganglion neurons and transformed Schwann cells and related these results to those obtained with the PC12 cell line. Here we show that addition of L1 and N-CAM antibodies and the isolated molecules themselves elicit cell type-specific responses that can be modulated by the substrate on which the cells are maintained. Depending on the cell type, cells respond to the triggering of L1 and N-CAM with antibodies, or addition of the purified molecules, by either up-regulation or down-regulation of inositol phosphate turnover, by a rise in intracellular Ca2+ levels dependent on or independent of the opening of voltage-gated Ca2+ channels, or by an increase or decrease in intracellular pH. Moreover, cerebellar neurons expressing N-CAM respond to addition N-CAM, but not to N-CAM antibodies, in contrast to the other neural cell types studied, which respond to both triggers. Furthermore, cerebellar neurons were the only cells to show a rise in cAMP levels in response to any of the ligands tested. This stimulation of cAMP production by L1 antibodies depended on the cross-linking of L1 molecules at the cell surface, whereas the other responses did not depend on clustering of L1. Simultaneous addition of L1 and N-CAM antibodies either elicited an additive or more than additive effect on the intracellular responses which, for cerebellar neurons, depends on the substrate on which the cells are maintained. These observations indicate that L1 and N-CAM or their antibodies activate cell type-specific intracellular signalling systems and that the two molecules can act interdependently or independently of each other.
L1 is a transmembranal homophilic cell adhesion molecule of the immunoglobulin superfamily expressed by neural and lymphoid cells. The heat-stable antigen (HSA, murine CD24) nectadrin is a highly and heterogeneously glycosylated glycophosphatidylinositol-linked differentiation antigen of haematopoietic and neural cells. L1 and nectadrin have been shown to mediate cell adhesion and intracellular Ca2+ signals in neurons and B lymphoblasts, respectively. Here we show that nectadrin is co-expressed with L1 in murine cerebellar granule cell neurons and neuroblastoma N2A cells. Purified nectadrin bound to L1 with an apparent binding ratio of five nectadrin molecules to one L1 molecule at saturation. Binding between nectadrin and purified N-CAM was not observed. In co-capping experiments nectadrin co-redistributed with L1 and N-CAM. Since in these cells N-CAM and L1 cohere by cis-binding nectadrin appears to join the L1-N-CAM complex through binding to L1. Antibodies to each L1 and nectadrin evoked small increases in the intracellular Ca2+ concentration. However, when both antibodies were added together or in tandem to the cells, a strong intracellular Ca2+ signal was measured that was at least 6- and 10-fold stronger than the signal separately induced by L1 and nectadrin antibodies respectively. Such a cooperative effect was not observed in B lymphoblasts, using the same antibodies, or in neurons, using a combination of L1 and Thy-1 antibodies. Both the weak Ca2+ signal mediated by L1 alone and the enhanced signal jointly triggered by antibodies to L1 and nectadrin were inhibited by phorbol 12-myristate 13-acetate and were not significantly affected by Ni2+ and Cd2+ cations, suggesting that they are related to one another and involve recruitment of intracellular Ca2+. Nectadrin therefore appears to join a functional complex of neuronal adhesion molecules and to potentiate the signal transduction pathway of L1, possibly in response to neuron-neuron contact formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.