The principle of biodegradation for the production of temporary implant materials (e.g. stents) plays an important role in the treatment of congenital heart defects. In the last decade several attempts have been made with different alloy materials—mainly based on iron and magnesium. None of the currently available materials in this field have demonstrated satisfying results and have therefore not found entry into broad clinical practice. While magnesium or magnesium alloy systems corrode too fast, the corrosion rate of pure iron‐stents is too slow for cardiovascular applications. In the last years FeMn alloy systems were developed with the idea that galvanic effects, caused by different electrochemical properties of Fe and Mn, would increase the corrosion rate. In vitro tests with alloys containing up to 30% Mn showed promising results in terms of biocompatibility. This study deals with the development of new FeMn alloy systems with lower Mn concentrations (FeMn 0.5 wt %, FeMn 2.7 wt %, FeMn 6.9 wt %) to avoid Mn toxicity. Our results show, that these alloys exhibit good mechanical features as well as suitable in vitro biocompatibility and corrosion properties. In contrast, the evaluation of these alloys in a mouse model led to unexpected results—even after 9 months no significant corrosion was detectable. Preliminary SEM investigations showed that passivation layers (FeMn phosphates) might be the reason for corrosion resistance. If this can be proved in further experiments, strategies to prevent or dissolve those layers need to be developed to expedite the in vivo corrosion of FeMn alloys. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 649–660, 2015.
Treatment with fixed orthodontic appliances can cause enamel demineralization by increased biofilm adhesion. The purpose of the present study was to investigate whether a polytetrafluoroethylene (PTFE) coating reduces biofilm formation on orthodontic brackets. One PTFE-coated bracket and one uncoated stainless steel bracket were bonded symmetrically on the first or second (four maxillary and nine mandibular) primary molars in 13 adolescent patients (five females and eight males, aged 11.2 +/- 2.8 years; four dropouts) for 8 weeks. Quantitative biofilm formation on brackets was analysed with the Rutherford backscattering detection (RBSD) method, a scanning electron microscopy technique. A total of five RBSD micrographs were obtained per bracket with views from the buccal, mesial, distal, cervical, and occlusal aspects. A two-sided paired t-test was used to compare data. A P-value less than 0.05 was considered significant. Total biofilm formation was 4.0 +/- 3.6 per cent of the surface on the PTFE-coated brackets and 22.2 +/- 5.4 per cent on uncoated brackets. Differences between the two groups were statistically significant (P < 0.05). Pairwise comparison of biofilm formation with respect to location (buccal, mesial, distal, cervical, and occlusal) revealed a significantly lower biofilm accumulation on PTFE-coated brackets on all surfaces. The results indicate that PTFE coating of brackets reduces biofilm adhesion to a minimum and might have the potential to reduce iatrogenic side effects, e.g. decalcification during orthodontic treatment with fixed appliances.
The principle of biodegradation has been considered for many years in the development of cardiovascular stents, especially for patients with congenital heart defects. A variety of materials have been examined with regard to their suitability for cardiovascular devices. Iron- and magnesium-based stents were investigated intensively during the last years. It has been shown, that iron, or iron based alloys have slow degradation kinetics whereas magnesium-based systems exhibit rapid degradation rates. Recently we have developed fluoride coated binary magnesium-calcium alloys with reduced degradation kinetics. These alloys exhibit good biocompatibility and no major adverse effects toward smooth muscle and endothelial cells in in vitro experiments. In this study, these alloys were investigated in a subcutaneous mouse model. Fluoride coated (fc) magnesium, as well as MgCa0.4%, MgCa0.6%, MgCa0.8%, MgCa1.0%, and a commercially available WE43 alloy were implanted in form of (fc) cylindrical plates into the subcutaneous tissue of NMRI mice. After a 3 and 6 months follow-up, the (fc) alloy plates were examined by histomorphometric techniques to assess their degradation rate in vivo. Our data indicate that all (fc) alloys showed a significant corrosion. For both time points the (fc) MgCa alloys showed a higher corrosion rate in comparison to the (fc) WE43 reference alloy. Significant adverse effects were not observed. Fluoride coating of magnesium-based alloys can be a suitable way to reduce degradation rates. However, the (fc) MgCa alloys did not exhibit decreased degradation kinetics in comparison to the (fc) WE43 alloy in a subcutaneous mouse model.
Against the background of the required weight reduction in transportation through lightweight construction, the application of hybrid structures, where dissimilar materials are joined together, has a high technical and economical potential. In the field of sheet machining, combinations of steel and aluminium are especially interesting. In comparison to conventional steels, the application of aluminium alloys as supporting materials makes a distinct weight reduction possible. On the other hand, steels have advantages in the fields forming and welding. The application of modern high-strength steels with reduced sheet thicknesses allows weight reduction, too. But joining of material combinations of steel and aluminium is problematic. On the one hand brittle intermetallic compounds are formed between steel and aluminium. On the other hand the aluminium melt has a bad wetting behaviour. Different physical properties of both materials have to be considered, too. To achieve sufficient mechanical properties of such joinings it is necessary to limit growth of intermetallic compounds between steel and aluminium. This can be actualized by an exact energy supply. With the electron beam on atmosphere a precise and easily controllable energy supply is possible. The publication demonstrates successful investigations, which were performed with the 175 kVNVEBW (Non Vacuum Electron Beam Welding) installation at Institut of Materials Science, University of Hanover. With NVEB joining hybrid structures between zinc coated steels and 5.xxx and 6.xxx aluminium alloys were produced. In a welding-brazing process (the steel remained in the solid phase whereas the aluminium was molten) combinations with acceptable mechanical properties could be joined. By use of optimized joining parameters as well as a surface activating flux, both, a good wetting and a thin intermetallic compound < 10 µm were attained. Another possible strategy is a pure brazing process, for which an example is also given in the paper. The paper shows metallurgical and mechanical investigations, among other things results of element distribution analysis and tensile tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.