Marine bioconstructions are biodiversity-rich, three-dimensional biogenic structures, regulating key ecological functions of benthic ecosystems worldwide. Tropical coral reefs are outstanding for their beauty, diversity and complexity, but analogous types of bioconstructions are also present in temperate seas. The main bioconstructions in the Mediterranean Sea are represented by coralligenous formations, vermetid reefs, deep-sea cold-water corals, Lithophyllum byssoides trottoirs, coral banks formed by the shallow-water corals Cladocora caespitosa or Astroides calycularis, and sabellariid or serpulid worm reefs. Bioconstructions change the morphological and chemicophysical features of primary substrates and create new habitats for a large variety of organisms, playing pivotal roles in ecosystem functioning. In spite of their importance, Mediterranean bioconstructions have not received the same attention that tropical coral reefs have, and the knowledge of their biology, ecology and distribution is still fragmentary. All existing data about the spatial distribution of Italian bioconstructions have been collected, together with information about their growth patterns, dynamics and connectivity. The degradation of these habitats as a consequence of anthropogenic pressures (pollution, organic enrichment, fishery, coastal development, direct physical disturbance), climate change and the spread of invasive species was also investigated. The study of bioconstructions requires a holistic approach leading to a better understanding of their ecology and the application of more insightful management and conservation measures at basin scale, within ecologically coherent units based on connectivity: the cells of ecosystem functioning.
Population abundance, distribution and habitat preference of the Mediterranean sympatric seahorses Hippocampus guttulatus and Hippocampus hippocampus were investigated in a semi‐enclosed sea system (Apulian coast, Ionian Sea). A total of 242 individuals of seahorses were sighted in the 11 transects surveyed in summer 2011. Hippocampus guttulatus (n = 225) were 14 times more abundant than H. hippocampus (17). The mean abundance of H. guttulatus for all the pooled sites was 0.018 m−2 (SE ± 0.003) ranging from a maximum of 0.035 (SE ± 0.007) to a minimum of 0.008 (SE ± 0.002). The size structure of long‐snouted seahorse shows a population ranging from 7 to 14 cm (SL) with a peak at 10 cm (TL). Juveniles (96.0 ± 8.0 mm) represent a significant fraction of the population, accounting more than 21% of the sighted individuals. In Mar Piccolo, H. guttulatus is able to shelter both in monotonous habitats, including the algal beds, and diversified ones, such as the rich filter‐feeder communities that colonize hard substrates. By contrast, H. hippocampus is mainly associated with habitats of low complexity. Today, the Mar Piccolo di Taranto is among the most heavily polluted water bodies in South Italy, with trace metals, hydrocarbons, pesticides and organic wastes affecting both biotic and abiotic matrices. However, despite the high level of degradation, the presence of a large mussel farm has avoided the impact of towed fishing gears, and eutrophication of water bodies has ensured a high trophic level that supports large crustacean populations, potential prey for seahorses.
Macro- and megafauna were recorded in the submarine Bari Canyon (southern Adriatic Sea, Mediterranean Sea) during an oceanographic cruise carried out in May-June 2012 and an experimental fishing survey conducted in November 2013. During the former, a total of 20 benthic samples were taken using a Van Veen grab at depths between 268 and 770 m and 4 deployments of a baited lander, for about 43 hours of video records, were carried out at depths between 443 and 788 m. During the latter, 8 longline fishing operations were conducted from 338 down to 612 m. Eighty-five living benthic and benthopelagic species were recorded: 29 Porifera, 1 Cnidaria, 2 Mollusca, 11 Annelida, 1 Arthropoda, 19 Bryozoa, 3 Echinodermata and 19 Chordata. A total of 51 species are new records for the Bari Canyon, 29 new records for the Adriatic Sea. Among the Porifera Cerbaris curvispiculifer is a new addition for the Italian Sponge Fauna. The first certain record of living specimens for the bryozoan Crisia tenella longinodata is reported. A total of 6 Mediterranean endemic species have been identified: 4 Porifera and 2 Annelida. The bathymetric range of some species has been extended. New information acquired for deep sea species confirms their importance in the structure of cold-water coral communities. This study has updated the knowledge on the biodiversity of the Adriatic Sea, as well as of the Bari Canyon in particular, one of the sites designated as “jewels of the Mediterranean” for which urgent conservation measures are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.