We present experimental results for what is to our knowledge the first spectral-hole-burning based rf spectrum analyzer to cover 10 GHz of rf analysis bandwidth. The rf signal of interest is modulated onto an optical carrier, and the resultant optical sidebands are burned into the inhomogeneously broadened absorption band of a Tm3+:YAG crystal. At the same time a second, frequency-swept laser reads out the absorption profile, which is a double-sideband replica of the rf spectrum, and thus the rf spectrum can be deduced after spectral calibration of the nonlinear readout chirp. This initial demonstration shows spectral analysis covering 10 GHz of bandwidth with >5500 spectral channels and provides 43 dB of dynamic range.
We demonstrate a 20 GHz spectrum analyzer with 1 MHz resolution and >40 dB dynamic range using spectral-hole-burning (SHB) crystals, which are cryogenically cooled crystal hosts lightly doped with rare-earth ions. We modulate a rf signal onto an optical carrier using an electro-optic intensity modulator to produce a signal beam modulated with upper and lower rf sidebands. Illuminating SHB crystals with modulated beams excites only those ions resonant with corresponding modulation frequencies, leaving holes in the crystal's absorption profile that mimic the modulation power spectrum and persist for up to 10 ms. We determine the spectral hole locations by probing the crystal with a chirped laser and detecting the transmitted intensity. The transmitted intensity is a blurred-out copy of the power spectrum of the original illumination as mapped into a time-varying signal. Scaling the time series associated with the transmitted intensity by the instantaneous chirp rate yields the modulated beam's rf power spectrum. The homogeneous linewidth of the rare-earth ions, which can be <100 kHz at cryogenic temperatures, limits the fundamental spectral resolution, while the medium's inhomogeneous linewidth, which can be >20 GHz, determines the spectral bandwidth.
We introduce a new approach to coherent lidar range-Doppler sensing by utilizing random-noise illuminating waveforms and a quantum-optical, parallel sensor based on spatial-spectral holography (SSH) in a cryogenically cooled inhomogeneously broadened absorber (IBA) crystal. Interference between a reference signal and the lidar return in the spectrally selective absorption band of the IBA is used to sense the lidar returns and perform the front-end range-correlation signal processing. Modulating the reference by an array of Doppler compensating frequency shifts enables multichannel Doppler filtering. This SSH sensor performs much of the postdetection signal processing, increases the lidar system sensitivity through range-correlation gain before detection, and is capable of not only Doppler processing but also parallel multibeam reception using the high-spatial resolution of the IBA crystals. This approach permits the use of ultrawideband, high-power, random-noise, cw lasers as ranging waveforms in lidar systems instead of highly stabilized, injection-seeded, and amplified pulsed or modulated laser sources as required by most conventional coherent lidar systems. The capabilities of the IBA media for many tens of gigahertz bandwidth and resolution in the 30-300 kHz regime, while using either a pseudo-noise-coded waveform or just a high-power, noisy laser with a broad linewidth (e.g., a truly random noise lidar) may enable a new generation of improved lidar sensors and processors. Preliminary experimental demonstrations of lidar ranging and simulation on range-Doppler processing are presented.
We present a one-dimensional iterative predictor-corrector finite-difference time-domain method for modeling of broadband optical pulse propagation and interaction with inhomogeneously broadened materials. The simulator is used to demonstrate two- and three-pulse photon echoes resulting from bandwidth limited pulse and matched chirp interactions with a material modeled with hundreds of equally spaced, discrete spectral lines of detuning. The results are illustrated as Bloch-sphere evolution movies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.