Ocean resources have the potential to provide a large source of renewable energy for communities around the globe. Technologies such as wave energy converters must be designed to operate remotely in harsh environmental conditions. These structures are exposed to widely varying structural loads, and there is interest in developing monitoring systems that can identify the presence of damage, estimate its severity, and provide maintenance or control recommendations that could protect the system from failure. The research presented in this paper focuses on using the electromechanical impedance response of piezoelectric transducers to monitor the health of composite materials similar to those used in the fabrication of several wave energy converters. Techniques have been developed to detect and classify discrete damage events such as holes and slots within composite plates, as well as fatigue damage that evolves due to manufacturing flaws such as delamination and laminate waves. Using data collected over a frequency range of 100 Hz to 100 kHz, a series of genetic algorithms and statistical modeling techniques were used to classify damage type and severity. Plate studies with discrete damage (holes, notches) provided a large dataset of 113 observations comprised of seven distinct classes, one baseline and six damage severities. Random forest techniques were used to classify this population, with accuracies of 93.4% obtained. Fatigue studies of rectangular composite beams containing manufacturing defects (delamination, laminate waves), produced a measurement population of 14 instances comprised of six distinct classes. Framing this problem as the time evolution of damage due to fatigue loads allowed the use of hidden Markov models to differentiate the type of manufacturing flaw present, with results indicating 85.7% accuracy given this limited dataset.
This work investigates the effects that the confined volume of atmospheric electrolytes has on the galvanic corrosion kinetics of a martensitic stainless steel alloy, UNS S13800, coupled with UNS A97075 in simulated atmospheric environments at relative humidity values that span the range of operational exposures. Restricted volumes found in thin films and droplets have been shown to control reduction reaction kinetics and are an ongoing challenge to characterize and standardize. This, along with the dynamic and high concentration of aggressive ions found in confined electrolytes, creates a unique corrosion system that requires a multifaceted approach to evaluate varied conditions, compare them with traditional measurements, and more accurately predict galvanic atmospheric corrosion. In this work, corrosion currents in galvanic couples were obtained under two environmental conditions: (1) bulk electrolytes, in a standardized test configuration, with chemistries relevant to atmospheric electrolytes; and (2) deliquesced droplets formed and equilibrated at a given temperature and relative humidity value. The corrosion currents for the same galvanic couple specimens were evaluated, using an atmospheric corrosion model, under a thin film electrolyte while statically loaded and unloaded, at two nominally different locations, e.g. Alexandria, VA, and Miami, FL, on the same date, using recorded weather conditions. The modeled corrosion currents were then compared with the currents obtained from the experimental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.