Theories of grounded cognition postulate that concepts are grounded in sensorimotor experience. But how can that be for concepts like Atlantis for which we do not have that experience? We claim that such concepts obtain their sensorimotor grounding indirectly, via already-known concepts used to describe them. Participants learned novel words referring to up or down concepts (mende = enhanced head or mende = bionic foot). In a first experiment, participants then judged the sensibility of sentences implying up or down actions (e.g., "You scratch your bionic foot") by performing up or down hand movements. Reactions were faster when the hand movement matched the direction of the implied movement. In the second experiment, we observed the same congruency effect for sentences like, "You scratch your mende", whose implied direction depended entirely on the learning phase. This offers a perspective on how concepts learned without direct experience can nonetheless be grounded in sensorimotor experience.
Previous studies found that an automatic meaning-composition process affects the processing of morphologically complex words, and related this operation to conceptual combination. However, research on embodied cognition demonstrates that concepts are more than just lexical meanings, rather being also grounded in perceptual experience. Therefore, perception-based information should also be involved in mental operations on concepts, such as conceptual combination. Consequently, we should expect to find perceptual effects in the processing of morphologically complex words. In order to investigate this hypothesis, we present the first fullyimplemented and data-driven model of perception-based (more specifically, vision-based) conceptual combination, and use the predictions of such a model to investigate processing times for compound words in four large-scale behavioral experiments employing three paradigms (naming, lexical decision, and timed sensibility judgments). We observe facilitatory effects of vision-based compositionality in all three paradigms, over and above a strong language-based (lexical and semantic) baseline, thus demonstrating for the first time perceptually grounded effects at the sub-lexical level. This suggests that perceptually-grounded information is not only utilized according to specific task demands but rather automatically activated when available.
Quantitative, data-driven models for mental representations have long enjoyed popularity and success in psychology (for example, distributional semantic models in the language domain), but have largely been missing for the visual domain. To overcome this, we present ViSpa (Vision Spaces), high-dimensional vector spaces that include vision-based representation for naturalistic images as well as concept prototypes. These vectors are derived directly from visual stimuli through a deep convolutional neural network (DCNN) trained to classify images, and allow us to compute vision-based similarity scores between any pair of images and/or concept prototypes. We successfully evaluate these similarities against human behavioral data in a series of large-scale studies, including off-line judgments – visual similarity judgments for the referents of word pairs (Study 1) and for image pairs (Study 2), and typicality judgments for images given a label (Study 3) – as well as on-line processing times and error rates in a discrimination (Study 4) and priming task (Study 5) with naturalistic image material. ViSpa similarities predict behavioral data across all tasks, which renders ViSpa a theoretically appealing model for vision-based representations and a valuable research tool for data analysis and the construction of experimental material: ViSpa allows for precise control over experimental material consisting of images (also in combination with words), and introduces a specifically vision-based similarity for word pairs. To make ViSpa available to a wide audience, this article a) includes (video) tutorials on how to use ViSpa in R, and b) presents a user-friendly web interface at http://vispa.fritzguenther.de.
Theories of grounded cognition assume that conceptual representations are grounded in sensorimotor experience. However, abstract concepts such as jealousy or childhood have no directly associated referents with which such sensorimotor experience can be made; therefore, the grounding of abstract concepts has long been a topic of debate. Here, we propose (a) that systematic relations exist between semantic representations learned from language on the one hand and perceptual experience on the other hand, (b) that these relations can be learned in a bottom-up fashion, and (c) that it is possible to extrapolate from this learning experience to predict expected perceptual representations for words even where direct experience is missing. To test this, we implement a data-driven computational model that is trained to map language-based representations (obtained from text corpora, representing language experience) onto vision-based representations (obtained from an image database, representing perceptual experience), and apply its mapping function onto language-based representations for abstract and concrete words outside the training set. In three experiments, we present participants with these words, accompanied by two images: the image predicted by the model and a random control image. Results show that participants' judgements were in line with model predictions even for the most abstract words. This preference was stronger for more concrete items and decreased for the more abstract ones. Taken together, our findings have substantial implications in support of the grounding of abstract words, suggesting that we can tap into our previous experience to create possible visual representation we don't have.
In the present study, we provide a comprehensive analysis and a multi-dimensional dataset of semantic transparency measures for 1,810 German compound words. Compound words are considered semantically transparent when the contribution of the constituents’ meaning to the compound meaning is clear (as in airport), but the degree of semantic transparency varies between compounds (compare strawberry or sandman). Our dataset includes both compositional and relatedness-based semantic transparency measures, also differentiated by constituents. The measures are obtained from a computational and fully implemented semantic model based on distributional semantics. We validate the measures using data from four behavioral experiments: Explicit transparency ratings, two different lexical decision tasks using different nonwords, and an eye-tracking study. We demonstrate that different semantic effects emerge in different behavioral tasks, which can only be capturedusing a multi-dimensional approach to semantic transparency. We further provide the semantic transparency measures derived from the model for a dataset of 40,475 additional German compounds, as well as for 2,061 novel German compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.