Mineralogical and geotechnical investigations on the possible use of compacted bentonite as a buffer material in nuclear waste repositories are reported. The swelling capacity is highly dependent on the density of the compacted bentonite. Swelling pressures >30 MPa were measured for dry densities of ~2.0 g/cm3. Added iron or magnetite powder up to 20 wt% had no influence on the swelling capacity. Compacted mixtures of 20 wt% ground set cement and bentonite showed higher swelling pressures but lower swelling strain capability than compacted bentonite alone. Steam lowered the swelling pressure of compacted bentonite to ~60% of the original value. The influence was, however, reversible by ultrasonic treatment. The thermal conductivity of saturated compacted bentonite at a density of 2.0-2.1 g/cm3is ~1.35-1.45 W/m°K The volumetric heat capacity ranges from 3.1 x 106to 3.4 x 106j/m3°C The saturated hydraulic conductivity of the compacted bentonite is <10-12m/s. The apparent diffusion coefficients for various ions in compacted bentonite for water contents in the range of 20 to 25 wt% are: K+: 5 x 10-11, Cs+: 6 x 10-12, Sr2+: 3 x 10-11, UO22+: <10-13, Th4+: <10-13, Fe2+: 4 x 10-11, Fe3+: 4 x 10-11, Cl-: 1 x 10-10and I-: 1 x 10-10m2/s. The 'breakthrough time' for an apparent diffusion coefficient of 10-11m2/s in compacted bentonite 1 m thick was estimated to be ~3000 years. The mineralogical longevity was investigated on natural K-bentonites from Kinnekulle, Sweden, and Montana, USA. Although these materials have undergone considerable changes during diagenesis and contain various amounts of mixed-layer illite-smectite, they still have a substantial swelling and adsorption capacity. The investigations demonstrate that although the properties of bentonite are negatively influenced to a certain extent by heat, hot steam, iron and cement, compacted bentonite is still the best choice to act as a buffer material in a nuclear waste repository.
Li +, Na +, Ca 2 § Sr 2+, CH 2+, or Zn2+-saturated samples of a cis-vacant montmorillonite from Linden, Bavaria, were heated to temperatures between 200-700~Half of each heated sample was subsequently autoclaved under steam at 200~ (--1.5 MPa) to promote rehydroxylation. The smectites were characterized by cation-exchange capacity (CEC), determination of exchangeable cations, infrared (IR) spectroscopy, and thermoanalytical investigations of evolved water in a thermobalance linked with a mass spectrometer.Changes in the montmorillonite structure and dehydroxylation behavior are related to three respective mechanisms: type of the interlayer cation, interlayer cation radius, and the movement of the interlayer cation. The migration of the smaller Li +, Cn 2+, and Zn 2+ ions after heating produces a strong reduction of CEC due to the Hofmann-Klemen effect before the initiation of dehydroxylation. Thereafter, the CEC of these smectites remains constant over a large temperature interval during dehydroxylation. After rehydroxylation, Cu 2+ and Zn2+-rich samples release 16-23 meq/100 g ofMg 2+ from the structure. No Mg z+ release is observed for the Li+-rich montmorillonite. Also the dehydroxylation behavior after rehydroxylation differs between the Cu 2+, Zn 2+, and Li+-rich samples. The mass curves of the evolved water during thermoanalysis of the rehydroxylated Cu 2+ and Zn2+-rich smectites show a peak doublet between 480-700~ For the Li +, Na +, Ca 2+, and Sr2+-rich montmorillonites, the second peak disappeared and a third peak at -760~ developed after rehydroxylation. The resulting structure after rehydroxylation of all samples is celadonite-like.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.