The optical selection rules in epitaxial quantum dots are strongly influenced by the orientation of their natural quantization axis, which is usually parallel to the growth direction. This configuration is well suited for vertically emitting devices, but not for planar photonic circuits because of the poorly controlled orientation of the transition dipoles in the growth plane. Here we show that the quantization axis of gallium arsenide dots can be flipped into the growth plane via moderate in-plane uniaxial stress. By using piezoelectric strain-actuators featuring strain amplification, we study the evolution of the selection rules and excitonic fine structure in a regime, in which quantum confinement can be regarded as a perturbation compared to strain in determining the symmetry-properties of the system. The experimental and computational results suggest that uniaxial stress may be the right tool to obtain quantum-light sources with ideally oriented transition dipoles and enhanced oscillator strengths for integrated quantum photonics.
Opinion formation is a process with strong implications for public policy. In controversial debates with large consequences, the public opinion is often trapped in a fifty-fifty stalemate, jeopardizing broadly accepted political decisions. Emergent effects from millions of private discussions make it hard to understand or influence this kind of opinion dynamics. Here we demonstrate that repulsion from opinions favors fifty-fifty stalemates. We study a voter model where agents can have two opinions or an undecided state in-between. In pairwise discussions, undecided agents can be convinced or repelled from the opinion expressed by another agent. If repulsion happens in at least one of four cases, as in controversial debates, the frequencies of both opinions equalize. Further we include transitions of decided agents to the undecided state. If that happens often, the share of undecided agents becomes large, as can be measured with the share of undecided answers in polls. arXiv:1909.06483v1 [physics.soc-ph]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.