Bisphenol-A (BPA), 17α-ethinylestradiol (EE2), and 4-nonylphenol (4NP) are endocrine-disrupting chemicals (EDCs) that are useful models for studying the potential fate and transport of EDCs in soil and water environments. Two alluvial soils with contrasting physicochemical properties were used as adsorbents for this study. The Zook soil material had more organic matter and clay than the sandy loam Hanlon soil material. Batch equilibrium experiments were performed to generate adsorption isotherms, to determine the adsorption parameters, and to assess desorption hysteresis. Adsorption of BPA to both soils followed an L-type isotherm, and 4NP adsorbed to both Hanlon and Zook soils exhibited S-shape isotherms. EE2 adsorbed to the Zook soil also followed an S-shaped isotherm, but EE2 adsorbed to the Hanlon soil showed an H-type isotherm. Overall, the Sips model fit the data well, with standard errors of prediction generally ≤6%. The adsorption affinity (K LF ) values were highest for 4NP, and BPA had the lowest hysteresis indices. The data suggest that BPA was most likely adsorbed by soil organic matter via hydrogen bonding involving its two phenolic groups. In contrast, isotherm shape, model affinity indices, lack of desorption, and molecular-scale characteristics led us to infer that 4NP was adsorbed largely by the retention of molecular clusters, perhaps in clay nanopores. Finally, the adsorption of EE2 exhibited different isotherm shapes for the two soils as well as intermediate affinity and desorption indices, suggesting that EE2 molecules could be retained both by soil organic matter and by clay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.