A cohort of 1022 consecutive singleton births was generated during [1987][1988] in the Faroe Islands, where increased methylmercury exposure occurs from traditional seafood diets that include pilot whale meat. The prenatal exposure level was determined from mercury analyses of cord blood, cord tissue, and maternal hair. At age 14 years, 878 of 1010 living cohort members underwent detailed neurobehavioral examination. Eighteen participants with neurological disorders were excluded. Blood and hair samples obtained from the participants were analyzed for mercury. The neuropsychological test battery was designed based on the same criteria as applied at the examination at age 7 years. Multiple regression analysis was carried out and included adjustment for confounders. Indicators of prenatal methylmercury exposure were significantly associated with deficits in finger tapping speed, reaction time on a continued performance task, and cued naming. Postnatal methylmercury exposure had no discernible effect. These findings are similar to those obtained at age 7 years, and the relative contribution of mercury exposure to the predictive power of the multiple regression models was also similar. An analysis of the test score difference between results at 7 and 14 years suggested that mercury-associated deficits had not changed between the two examinations. In structural equation model analyses, the neuropsychological tests were separated into five groups; methylmercury exposure was significantly associated with deficits in motor, attention, and verbal tests. These findings are supported by independent assessment of neurophysiological outcomes. The effects on brain function associated with prenatal methylmercury exposure therefore appear to be multi-focal and permanent.
A cohort of 1022 consecutive singleton births was generated during [1987][1988] in the Faroe Islands, where increased methylmercury exposure occurs from traditional seafood diets that include pilot whale meat. The prenatal exposure level was determined from mercury analyses of cord blood, cord tissue, and maternal hair. At age 14 years, 878 of 1010 living cohort members underwent detailed neurobehavioral examination. Eighteen participants with neurological disorders were excluded. Blood and hair samples obtained from the participants were analyzed for mercury. The neuropsychological test battery was designed based on the same criteria as applied at the examination at age 7 years. Multiple regression analysis was carried out and included adjustment for confounders. Indicators of prenatal methylmercury exposure were significantly associated with deficits in finger tapping speed, reaction time on a continued performance task, and cued naming. Postnatal methylmercury exposure had no discernible effect. These findings are similar to those obtained at age 7 years, and the relative contribution of mercury exposure to the predictive power of the multiple regression models was also similar. An analysis of the test score difference between results at 7 and 14 years suggested that mercury-associated deficits had not changed between the two examinations. In structural equation model analyses, the neuropsychological tests were separated into five groups; methylmercury exposure was significantly associated with deficits in motor, attention, and verbal tests. These findings are supported by independent assessment of neurophysiological outcomes. The effects on brain function associated with prenatal methylmercury exposure therefore appear to be multi-focal and permanent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.