How to cite this article: Göksu C, Scheffler K, Gregersen F, et al. Sensitivity and resolution improvement for in vivo magnetic resonance currentdensity imaging of the human brain.
Background: Transcranial electric stimulation during MR imaging can introduce safety issues due to coupling of the RF field with the stimulation electrodes and leads. Objective: To optimize the stimulation setup for MR current density imaging (MRCDI) and increase maximum stimulation current, a new low-conductivity (s ¼ 29.4 S/m) lead wire is designed and tested. Method: The antenna effect was simulated to investigate the effect of lead conductivity. Subsequently, specific absorption rate (SAR) simulations for realistic lead configurations with low-conductivity leads and two electrode types were performed at 128 MHz and 298 MHz being the Larmor frequencies of protons at 3T and 7T. Temperature measurements were performed during MRI using high power deposition sequences to ensure that the electrodes comply with MRI temperature regulations. Results: The antenna effect was found for copper leads at ¼ RF wavelength and could be reliably eliminated using low-conductivity leads. Realistic lead configurations increased the head SAR and the local head SAR at the electrodes only minimally. The highest temperatures were measured on the rings of center-surround electrodes, while circular electrodes showed little heating. No temperature increase above the safety limit of 39 C was observed.
Conclusion:Coupling to the RF field can be reliably prevented by low-conductivity leads, enabling cable paths optimal for MRCDI. Compared to commercial copper leads with safety resistors, the lowconductivity leads had lower total impedance, enabling the application of higher currents without changing stimulator design. Attention must be paid to electrode pads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.