The utility of mesoporous silica nanoparticles (MSNs) has been repeatedly proven in a wide range of biomedical applications. The general morphology of these particles is easily modifiable by various post-grafting possibilities and adjustments within the surfactant-based template. The synthesis of multilamellar vesicular silica nanoparticles has led to the discovery of beneficial attributes regarding said particles. Depending on the synthesis process, various parameters are affected including packaging capacity, stability, drug adsorption and release. This research focused on synthesis and characterization of multilamellar MSNs using a cationic-cationic co-surfactant templating route testing various ratios of cetyltrimethylammonium bromide (CTAB) and didodecyldimethylammonium bromide (DDAB). TEM imaging showed clear differences in size and morphology between the different samples, and was further characterized by BET and BJH analysis. All multilamellar nanoparticles did exhibit a similar pore size distribution and overall gradual release of drug contents. However, the degree of drug adsorption and overtime drug release was clearly influenced by the number of layers of the MSNs, proving the utility of adjusting the template. Further experiments could be conducted to validate the utility of beta- cyclodextrin as a template regulator and to investigate both biocompatibility and biodegradability of the multilamellar MSNs.
A recently found biomarker regarding multiple sclerosis, namely the anti-SPAG16 antibody (Ab), could be a potential way for early detection, prognosis and diagnosis of said autoimmune disease. Merging electrochemical analysis with a microfluidic system is a novel approach, which avoids the use of labelling steps as seen in traditional ELISA immunoassays. In this study, aluminium interdigitated electrodes on polystyrene-coated PET foils were implemented in a microfluidic flow cell to bind and detect SPAG16 Abs by impedimetric measurements. The coated PET foils showed a clear affinity for the fusion protein SPAG16THIO and thioredoxin (THIO). Determining sensitivity and specificity of antibody-antigen binding using a microfluidic ELISA immunoassay has revealed the test to be unreliable by showing no linear pattern of a dilution series of the standard and producing skewed inconsistent results. The impedimetric analysis showed opposite results of what one would expect. The systems efficiency is in need to be revised and optimised before undergoing actual diagnostic tests. Further advancement could be done by reducing leakage, securing a more stable entrance for injection and circumventing the occurence of air bubbles in the wells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.