The disordered Tubulin Polymerization Promoting Protein (TPPP/p25), a prototype of neomorphic moonlighting proteins, displays physiological and pathological functions by interacting with distinct partners. Here the role of the disordered N- and C-termini straddling a middle flexible segment in the distinct functions of TPPP/p25 was established, and the binding motives responsible for its heteroassociations with tubulin and α-synuclein, its physiological and pathological interacting partner, respectively, were identified. We showed that the truncation of the disordered termini altered the folding state of the middle segment and has functional consequences concerning its physiological function. Double truncation diminished its binding to tubulin/microtubules, consequently the tubulin polymerization/microtubule bundling activities of TPPP/p25 were lost highlighting the role of the disordered termini in its physiological function. In contrast, interaction of TPPP/p25 with α-synuclein was not affected by the truncations and its α-synuclein aggregation promoting activity was preserved, showing that the α-synuclein binding motif is localized within the middle segment. The distinct tubulin and α-synuclein binding motives of TPPP/p25 were also demonstrated at the cellular level: the double truncated TPPP/p25 did not align along the microtubules in contrast to the full length form, while it induced α-synuclein aggregation. The localization of the binding motives on TPPP/p25 were established by specific ELISA experiments performed with designed and synthesized peptides: motives at the 178-187 and 147-156 segments are involved in the binding of tubulin and α-synuclein, respectively. The dissimilarity of these binding motives responsible for the neomorphic moonlighting feature of TPPP/p25 has significant innovative impact in anti-Parkinson drug research.
Phosphorylation adjacent to nuclear localization signals (NLSs) is involved in the regulation of nucleocytoplasmic transport. The nuclear isoform of human dUTPase, an enzyme that is essential for genomic integrity, has been shown to be phosphorylated on a serine residue (Ser11) in the vicinity of its nuclear localization signal; however, the effect of this phosphorylation is not yet known. To investigate this issue, an integrated set of structural, molecular and cell biological methods were employed. It is shown that NLS‐adjacent phosphorylation of dUTPase occurs during the M phase of the cell cycle. Comparison of the cellular distribution of wild‐type dUTPase with those of hyperphosphorylation‐ and hypophosphorylation‐mimicking mutants suggests that phosphorylation at Ser11 leads to the exclusion of dUTPase from the nucleus. Isothermal titration microcalorimetry and additional independent biophysical techniques show that the interaction between dUTPase and importin‐α, the karyopherin molecule responsible for `classical' NLS binding, is weakened significantly in the case of the S11E hyperphosphorylation‐mimicking mutant. The structures of the importin‐α–wild‐type and the importin‐α–hyperphosphorylation‐mimicking dUTPase NLS complexes provide structural insights into the molecular details of this regulation. The data indicate that the post‐translational modification of dUTPase during the cell cycle may modulate the nuclear availability of this enzyme.
BackgroundAutoreactive B cells are crucial players in the pathogenesis of rheumatoid arthritis (RA). Autoantibodies specific for citrullinated proteins (ACPA), present in the serum of approximately 60–70 % of patients, have a pathogenic role in the disease. B cell depleting therapies may result in a transient immunosuppression, increasing the risk of infections. Our aim was to develop a new therapeutic approach to selectively deplete the ACPA producing autoreactive B cells.MethodsTo target B cells synthetic citrullinated peptide derived from the β chain of fibrin, β60-74Cit 60,72,74 (β60-74Cit), the predominant epitope recognized by ACPA was used. Complement dependent cytotoxicity (CDC) was induced by a modified peptide derived from gp120 of HIV-1. To trigger CDC both the targeting peptide and the complement activating peptide were covalently coupled in multiple copies to the surface of poly (DL-lactic-co-glycolic acid) nanoparticles (NPs). Ex vivo antibody synthesis was examined by ELISA and ELISpot. CDC was tested after dead cell staining by flow cytometry.ResultsThe β60-74Cit peptide was selectively recognized by a small subset of B cells from RA patients having high level of peptide specific serum antibody, suggesting that the peptide can target diseased B cells. The modified gp120 peptide covalently coupled to NPs induced the formation of the complement membrane attack complex, C5b-9 in human serum. We show here for the first time that bifunctional NPs coupled to multiple copies of both the targeting peptide and the complement activating effector peptide on their surface significantly reduce β60-74Cit peptide specific ex vivo ACPA production, by inducing complement dependent lysis of the citrullinated peptide specific B cells of seropositive RA patients.ConclusionsBifunctional NPs covalently coupled to autoantigen epitope peptide and to a lytic peptide activating complement may specifically target and deplete the peptide specific autoreactive B-cells.
SummaryAnti-citrullinated peptide/protein antibodies (ACPAs) are highly sensitive and specific markers of rheumatoid arthritis (RA). Identification of peptide epitopes that may detect different subgroups of RA patients might have diagnostic and prognostic significance. We have investigated citrulline-and arginine-containing peptide pairs derived from filaggrin, collagen or vimentin, and compared this citrulline-peptide panel with the serological assays conventionally used to detect ACPAs. Furthermore, we studied if the same citrulline-peptides identify antibody-secreting cells in in vitro cultures of RA B cells. Recognition of citrulline-and arginine-containing filaggrin, vimentin and collagen peptide epitopes were tested by Multipin ELISA system, by indirect ELISA and by a peptide-specific microarray. B cells were purified from blood by negative selection; antibody-producing cells were enumerated by ELISPOT assay. The panel composed of citrulline-peptide epitopes of filaggrin, collagen and vimentin was recognized by RA sera with a sensitivity and specificity comparable with the currently used tests. Moreover, the combined citrulline-peptide panel including the new short epitope peptide of filaggrin, fil311-315, also identified nearly one-third of RA cases that were negative for antibodies against cyclic citrullinated peptides, mutated citrullinated vimentin or for rheumatoid factor. The results with the peptide-specific microarray have shown that although most ACPAs recognizing the four citrulline peptides are IgG, some of them specifically recognizing citrulline-containing filaggrin peptides (fil311-315 and fil306-326) are IgM, and so may be produced either by newly formed activated B cells or by unswitched B memory cells. Furthermore, the citrulline-peptides of filaggrin and vimentin detect ACPA-producing cells, and so could also be applied to study the B cells of RA patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.