We introduce a modeling framework for the investigation of on-line machine learning processes in non-stationary environments. We exemplify the approach in terms of two specific model situations: In the first, we consider the learning of a classification scheme from clustered data by means of prototype-based Learning Vector Quantization (LVQ). In the second, we study the training of layered neural networks with sigmoidal activations for the purpose of regression. In both cases, the target, i.e., the classification or regression scheme, is considered to change continuously while the system is trained from a stream of labeled data. We extend and apply methods borrowed from statistical physics which have been used frequently for the exact description of training dynamics in stationary environments. Extensions of the approach allow for the computation of typical learning curves in the presence of concept drift in a variety of model situations. First results are presented and discussed for stochastic drift processes in classification and regression problems. They indicate that LVQ is capable of tracking a classification scheme under drift to a non-trivial extent. Furthermore, we show that concept drift can cause the persistence of sub-optimal plateau states in gradient based training of layered neural networks for regression.
The Internet of Things (IoT) is a name coined to the digital ecosystem of numerous internet connected devices. It brings the physical world closer to the digital one and as a result, allows for new applications and services. The emergence of Blockchain, a distributed ledger technology, presents a possible solution to ensure trust in decentralized systems. Blockchain brings trust, immutability, and verifiability of a distributed ledger in a decentralized network which could be useful to build trust in IoT. However, the integration of IoT with Blockchain involves a number of challenges. The use of Blockchain within the IoT is a recent and a fast paced topic. Therefore, conducting a systematic literature review is essential to understand what has been proposed on the topic. Recent work has provided a systematic review with a focus on Bitcoin. In this paper, we present a systematic review of more recent work on Blockchain and IoT, with a broader focus on Blockchain platforms beyond Bitcoin. Our work provides an overview of what has been done so far on the use of Blockchain and IoT.
We present a modelling framework for the investigation of prototype-based classifiers in non-stationary environments. Specifically, we study Learning Vector Quantization (LVQ) systems trained from a stream of high-dimensional, clustered data. We consider standard winnertakes-all updates known as LVQ1. Statistical properties of the input data change on the time scale defined by the training process. We apply analytical methods borrowed from statistical physics which have been used earlier for the exact description of learning in stationary environments. The suggested framework facilitates the computation of learning curves in the presence of virtual and real concept drift. Here we focus on timedependent class bias in the training data. First results demonstrate that, while basic LVQ algorithms are suitable for the training in non-stationary environments, weight decay as an explicit mechanism of forgetting does not improve the performance under the considered drift processes.
We present a modelling framework for the investigation of supervised learning in non-stationary environments. Specifically, we model two example types of learning systems: prototype-based learning vector quantization (LVQ) for classification and shallow, layered neural networks for regression tasks. We investigate so-called student–teacher scenarios in which the systems are trained from a stream of high-dimensional, labeled data. Properties of the target task are considered to be non-stationary due to drift processes while the training is performed. Different types of concept drift are studied, which affect the density of example inputs only, the target rule itself, or both. By applying methods from statistical physics, we develop a modelling framework for the mathematical analysis of the training dynamics in non-stationary environments. Our results show that standard LVQ algorithms are already suitable for the training in non-stationary environments to a certain extent. However, the application of weight decay as an explicit mechanism of forgetting does not improve the performance under the considered drift processes. Furthermore, we investigate gradient-based training of layered neural networks with sigmoidal activation functions and compare with the use of rectified linear units. Our findings show that the sensitivity to concept drift and the effectiveness of weight decay differs significantly between the two types of activation function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.