InGaN/GaN-based solar cells with vertical-conduction feature on silicon substrates were fabricated by wafer bonding technique. The vertical solar cells with a metal reflector sandwiched between the GaN-based epitaxial layers and the Si substrate could increase the effective thickness of the absorption layer. Given that the thermally resistive sapphire substrates were replaced by the Si substrate with high thermal conductivity, the solar cells did not show degradation in power conversion efficiency (PCE) even when the solar concentrations were increased to 300 suns. The open circuit voltage increased from 1.90 V to 2.15 V and the fill factor increased from 0.55 to 0.58 when the concentrations were increased from 1 sun to 300 suns. With the 300-sun illumination, the PCE was enhanced by approximately 33% compared with the 1-sun illumination.
We present a trichromatic GaN-based light-emitting diode (LED) that emits near-ultraviolet (n-UV) blue and green peaks combined with red phosphor to generate white light with a low correlated color temperature (CCT) and high color rendering index (CRI). The LED structure, blue and green unipolar InGaN/GaN multiple quantum wells (MQWs) stacked with a top p-i-n structure containing an InGaN/GaN MQW emitting n-UV light, was grown epitaxially on a single substrate. The trichromatic LED chips feature a vertical conduction structure on a silicon substrate fabricated through wafer bonding and laser lift-off techniques. The blue and green InGaN/GaN MQWs were pumped with n-UV light to re-emit low-energy photons when the LEDs were electrically driven with a forward current. The emission spectrum included three peaks at approximately 405, 468, and 537 nm. Furthermore, the trichromatic LED chips were combined with red phosphor to generate white light with a CCT and CRI of approximately 2900 and 92, respectively.
A p-i-n structure with near-UV(n-UV) emitting InGaN/GaN multiple quantum well(MQW) structure stacked on a green unipolar InGaN/GaN MQW was epitaxially grown at the same sapphire substrate. Photon recycling green light-emitting diodes(LEDs) with vertical-conduction feature on silicon substrates were then fabricated by wafer bonding and laser lift-off techniques. The green InGaN/GaN QWs were pumped with n-UV light to reemit low-energy photons when the LEDs were electrically driven with a forward current. Efficiency droop is potentially insignificant compared with the direct green LEDs due to the increase of effective volume of active layer in the optically pumped green LEDs, i.e., light emitting no longer limited in the QWs nearest to the p-type region to cause severe Auger recombination and carrier overflow losses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.