Liana abundance and biomass are increasing in neotropical and Asian tropical seasonal forests over the past decades. Stem mechanical properties and hydraulic traits influence the growth and survival of plants, yet the differences in stem mechanical and hydraulic performance between congeneric lianas and trees remain poorly understood. Here, we measured 11 stem mechanical and hydraulic traits for 10 liana species and 10 tree species from Bauhinia grown in a tropical common garden. Our results showed that Bauhinia lianas possessed lower stem mechanical strength as indicated by both modulus of elasticity and modulus of rupture, and higher stem potential hydraulic conductivity than congeneric trees. Such divergence was mainly attributed to the differentiation in liana and tree life forms. Whether the phylogenetic effect was considered or not, mechanical strength was positively correlated with wood density, vessel conduit wall reinforcement and sapwood content across species. Results of principle component analysis showed that traits related to mechanical safety and hydraulic efficiency were loaded in the opposite direction, suggesting a trade-off between biomechanics and hydraulics. Our results provide evidence for obvious differentiation in mechanical demand and hydraulic efficiency between congeneric lianas and trees.
Passiflora xishuangbannaensis , Passiflora subgenus Decaloba , is a very rare endemic to the Yunnan, China. Here we report and characterize the complete chloroplast (cp) genome sequence of P. xishuangbannaensis to provide genomic resources useful for promoting its conservation and systematics. The complete genome is 135,742 bp in length and the overall GC content is 37.1%. The cp genome sequence has a typical quadripartite structure, comprising two inverted repeats (IRs: 20,604 bp) regions, which are separated by a small single-copy (SSC: 13,159 bp) region and a large single-copy (LSC: 81,375 bp) region. Moreover, a total of 122 functional genes were annotated, including 77 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The phylogenetic analysis recovered P. xishuangbannaensis as a member of subgenus Decaloba .
Purple passion fruit (Passiflora edulis Sims) is a perennial climbing vine native to South America that is grown worldwide as an edible tropical fruit with excellent nutritional value and high economic value (Zibadi et al. 2007). With the increasing expansion of the plantation area in China, considerable economic loss caused by collar rot has attracted wide attention. From 2018-2020, collar rot resulted in the death of many plants of P. edulis 'Mantianxing', a commercial cultivar in China, in southwest China's Yunnan province. The disease spread quickly, and field incidence reached more than 50%. Stem rot symptoms were observed at the base of the stem, about 5-10 cm from the ground, resulting in wilting, defoliation, and death of plants. Representative symptomatic samples were collected from the base of five plants, surface disinfested for 30 seconds with 75% ethanol and 15 min with 10% hypochlorite, washed three times with sterile distilled water, then transferred to potato dextrose agar (PDA) dishes. After 2 days in the dark at 28℃, emerging fungal colonies were purified on new PDA dishes cultured at 28℃ for 7 days. The mycelia were flocculent. The color of the surface and the reverse colony was white and cream, respectively. On synthetic nutrient agar (SNA) medium, microconidia were oval, ellipsoidal or reniform, 0- or 1-septate, and 6.7-23.1 μm in length (n>30); macroconidia were straight to slightly curved, 3- or 5-septate, and 30.8-53.9 μm in length (n>30). Genomic DNA, extracted from six isolates, was amplified with three pairs of primers, ITS1 and ITS4 (White et al. 1990) , EF1-728F and EF1-986R (Carbone and Kohn 1999), and fRPB2-5F and fRPB2-7cR (Liu et al. 1999). The amplicons from all six isolates were sequenced and identical sequences obtained. The sequence of one representative isolate was uploaded to NCBI (National Center for Biotechnology Information) and analyzed with BLASTn in the Fusarium MLST database (https://fusarium.mycobank.org). The sequence of the internal transcribed spacer 1 (ITS1) region (GenBank MN944550) showed 99.1% (449/453 bp) identity to Fusarium solani strain NRRL 53667 (syn: Neocosmospora solani, GenBank MH582405). The sequence of the translation elongation factor-1 (EF-1) gene (GenBank MN938933) showed 97.8% identity (263/269 bp) to F. solani strain NRRL 32828 (GenBank DQ247135). The sequence of the second largest subunit of RNA polymerase Ⅱ (RPB2) gene (GenBank MW002686) showed 98.7% identity (810/821 bp) to F. solani strain NRRL 43441 (GenBank MH582407). Based on a multilocus phylogenetic analysis of the ITS1, EF-1 and RPB2 sequences, coupled with the morphological characteristics, the isolate (designated as NsPed1) was considered to be Neocosmospora solani (syn: Fusarium solani) (Crespo et al. 2019). Subsequently, three-month-old healthy seedlings and 45-day-old cuttings of P. edulis 'Mantianxing' plants were inoculated with the isolate NsPed1 to test its pathogenicity. Stems were wounded, approximately 1-2 mm deep, in the collar region of plants at 2 cm above the soil. A disk (9 mm in diameter) of NsPed1-colonized PDA was placed on the wound. Sterile PDA served as controls. All plants were kept in a growth chamber with 28-30°C, 60% relative humidity, and 16/8-h light/dark photoperiod. Fifteen plants were used for each treatment and replicated three times. Two weeks after inoculation, the stems of the inoculated plants turned brown with a lesion, 2-5 cm in length, and the leaves wilted. These symptoms were similar to those of the diseased plants in the field. The control plants were asymptomatic. N. solani NsPed1 was re-isolated from the infected plants, satisfying Koch’s postulates. Taken together, N. solani NsPed1 was identified as the causal pathogen of collar rot in P. edulis 'Mantianxing'. Knowledge of the causal organism of collar rot in purple passion fruit will lead to improved measures to prevent and control the disease in China and other countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.