Background The tropical liver fluke, Fasciola gigantica causes fasciolosis, an important disease of humans and livestock. We characterized dynamic transcriptional changes associated with the development of the parasite in its two hosts, the snail intermediate host and the mammalian definitive host. Results Differential gene transcription analysis revealed 7445 unigenes transcribed by all F. gigantica lifecycle stages, while the majority (n = 50,977) exhibited stage-specific expression. Miracidia that hatch from eggs are highly transcriptionally active, expressing a myriad of genes involved in pheromone activity and metallopeptidase activity, consistent with snail host finding and invasion. Clonal expansion of rediae within the snail correlates with increased expression of genes associated with transcription, translation and repair. All intra-snail stages (miracidia, rediae and cercariae) require abundant cathepsin L peptidases for migration and feeding and, as indicated by their annotation, express genes putatively involved in the manipulation of snail innate immune responses. Cercariae emerge from the snail, settle on vegetation and become encysted metacercariae that are infectious to mammals; these remain metabolically active, transcribing genes involved in regulation of metabolism, synthesis of nucleotides, pH and endopeptidase activity to assure their longevity and survival on pasture. Dramatic growth and development following infection of the mammalian host are associated with high gene transcription of cell motility pathways, and transport and catabolism pathways. The intra-mammalian stages temporally regulate key families of genes including the cathepsin L and B proteases and their trans-activating peptidases, the legumains, during intense feeding and migration through the intestine, liver and bile ducts. While 70% of the F. gigantica transcripts share homology with genes expressed by the temperate liver fluke Fasciola hepatica, gene expression profiles of the most abundantly expressed transcripts within the comparable lifecycle stages implies significant species-specific gene regulation. Conclusions Transcriptional profiling of the F. gigantica lifecycle identified key metabolic, growth and developmental processes the parasite undergoes as it encounters vastly different environments within two very different hosts. Comparative analysis with F. hepatica provides insight into the similarities and differences of these parasites that diverged > 20 million years ago, crucial for the future development of novel control strategies against both species.
Background Fasciola gigantica, the tropical liver fluke, infects buffaloes in Asian and African countries and causes significant economic losses and poses public health threat in these countries. However, little is known of the transcriptional response of buffaloes to infection with F. gigantica. The objective of the present study was to perform the first transcriptomic analysis of buffalo liver infected by F. gigantica. Understanding the mechanisms that underpin F. gigantica infection in buffaloes will contribute to our ability to control this parasite.MethodsWe challenged buffaloes with 500 viable F. gigantica metacercariae and collected liver samples through a time course at 3, 42 and 70 days post-infection (dpi). Then, we performed gene expression analysis on liver samples using RNA sequencing (RNA-Seq) Illumina technology and confirmed the RNA-Seq data by quantitative RT-PCR analysis.ResultsTotals of 496, 880 and 441 differentially expressed transcripts were identified in the infected livers at 3, 42 and 70 dpi, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that transcriptional changes in the liver of infected buffaloes evolve over the course of infection. The predominant response of buffaloes to infection was mediated by certain pathways, such as MHC antigen processing and presentation, Toll-like receptor 4 (TLR4), transforming growth factor beta (TGF-β), and the cytochrome P450. Hepatic drug metabolizing enzymes and bile secretion were also affected.Conclusions Fasciola gigantica can induce statistically significant and biologically plausible differences in the hepatic gene expression of infected buffaloes. These findings provide new insights into the response of buffaloes to F. gigantica over the course of infection, which may be useful in determining pathways that can modulate host-parasite interaction and thus potentially important for clearance of the parasite.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-017-1990-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.