published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User
One of the well-known observations in the Fischer–Tropsch (FT) reaction is that the CH4 selectivity for cobalt catalysts is always higher than the value expected on the basis of the Anderson–Schulz–Flory (ASF) distribution. Depositing graphitic carbon on a cobalt catalyst strongly suppresses this non-ASF CH4, while the formation of higher hydrocarbons is much less affected. Carbon was laid down on the cobalt catalyst via the Boudouard reaction. We provide evidence that the amorphous carbon does not influence the FT reaction, as it can be easily hydrogenated under reaction conditions. Graphitic carbon is rapidly formed and cannot be removed. This unreactive form of carbon is located on terrace sites and mainly decreases the CO conversion by limiting CH4 formation. Despite nearly unchanged higher hydrocarbon yield, the presence of graphitic carbon enhances the chain-growth probability and strongly suppresses olefin hydrogenation. We demonstrate that graphitic carbon will slowly deposit on the cobalt catalysts during CO hydrogenation, thereby influencing CO conversion and the FT product distribution in a way similar to that for predeposited graphitic carbon. We also demonstrate that the buildup of graphitic carbon by 13CO increases the rate of C–C coupling during the 12C3H6 hydrogenation reaction, whose products follow an ASF-type product distribution of the FT reaction. We explain these results by a two-site model on the basis of insights into structure sensitivity of the underlying reaction steps in the FT mechanism: carbon formed on step-edge sites is involved in chain growth or can migrate to terrace sites, where it is rapidly hydrogenated to CH4. The primary olefinic FT products are predominantly hydrogenated on terrace sites. Covering the terraces by graphitic carbon increases the residence time of CHx intermediates, in line with decreased CH4 selectivity and increased chain-growth rate.
With the aim to examine the variation in the electronic properties of CoTiSb due to heat treatment, a comparative study of the as-cast and annealed samples using 59 Co nuclear magnetic resonance ͑NMR͒ spectroscopy was performed. All NMR observations clearly indicate a significant change in the local electronic characteristics for the annealed sample. The spin-lattice relaxation rate measurements further provide an estimate of Co-d Fermi-level density of states, N d ͑E F ͒, indicating a substantial reduction in N d ͑E F ͒ for the specimen with heat treatment. This finding gives a microscopic interpretation for the larger electrical resistivity and Seebeck coefficient in the annealed half-Heusler alloys, as the samples with higher electrical resistivity and Seebeck coefficient usually are associated with lower carrier densities in the vicinity of the Fermi level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.