Precise patterning with microscale lateral resolution and widely tunable heights is critical for integrating colloidal nanocrystals into advanced optoelectronic and photonic platforms. However, patterning nanocrystal layers with thickness above 100 nm remains challenging for both conventional and emerging direct photopatterning methods, due to limited light penetration depths, complex mechanical and chemical incompatibilities, and others. Here, we introduce a direct patterning method based on a thermal mechanism, namely, the thermally activated ligand chemistry (or TALC) of nanocrystals. The ligand cross-linking or decomposition reactions readily occur under local thermal stimuli triggered by near-infrared lasers, affording high-resolution and nondestructive patterning of various nanocrystals under mild conditions. Patterned quantum dots fully preserve their structural and photoluminescent quantum yields. The thermal nature allows for TALC to pattern over 10 μm thick nanocrystal layers in a single step, far beyond those achievable in other direct patterning techniques, and also supports the concept of 2.5D patterning. The thermal chemistry-mediated TALC creates more possibilities in integrating nanocrystal layers in uniform arrays or complex hierarchical formats for advanced capabilities in light emission, conversion, and modulation.
Three-dimensional (3D) laser nanoprinting allows maskless manufacturing of diverse nanostructures with nanoscale resolution. However, 3D manufacturing of inorganic nanostructures typically requires nanomaterial-polymer composites and is limited by a photopolymerization mechanism, resulting in a reduction of material purity and degradation of intrinsic properties. We developed a polymerization-independent, laser direct writing technique called photoexcitation-induced chemical bonding. Without any additives, the holes excited inside semiconductor quantum dots are transferred to the nanocrystal surface and improve their chemical reactivity, leading to interparticle chemical bonding. As a proof of concept, we printed arbitrary 3D quantum dot architectures at a resolution beyond the diffraction limit. Our strategy will enable the manufacturing of free-form quantum dot optoelectronic devices such as light-emitting devices or photodetectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.