The two-photon absorption (TPA) properties of a new tetraphenylethene derivative and its covalent dimers have been calculated employing the density functional response theory. It is found that linear arrangement of branches can give rise to a cooperative TPA behavior. Partial planarity and linear arrangement are the possible reasons for the observed aggregation-induced TPA enhancement. On the basis of the model molecule, we have designed a series of tetraphenylethene derivatives which differ by donor moieties, connection modes, or central bridges after taking the structure-property relationship of TPA mechanism into account. The TPA spectra of the designed molecules have been calculated, and their TPA properties are analyzed at length. Our results suggest that the change of the connection mode of the carbazole group and the introduction of a vinylene or ethynylene linkage into a molecule can enhance TPA intensity greatly. It can be expected that all of the designed molecules could possess high TPA features. This research is helpful for the design of efficient TPA materials.
Organic materials with strong two-photon absorption response have attracted a great deal of interest in recent years for their many potential applications such as two-photon fluorescence microscopy, optical limiting, photodynamic therapy, and so on. Theoretical study on the relationships between molecular structure and two-photon absorption property has great importance in guiding the experimental design and synthesis of functional materials. Nowadays, quantum chemical calculations become very useful and popular tools in investigating the structure-property relations. At the same computational level, the two-photon absorption properties of different compounds can be compared accurately, and thus provide reasonable structure-property relations. Recently, a series of novel divinyl sulfides/sulfonesbased molecules have been synthesized and it is found that their photophysical properties behave like quadrupolar charge-transfer chromophores. In order to explore their potential two-photon absorption applications, in this paper, the two-photon absorption properties of these new molecules are calculated by using quantum chemical methods. Their molecular geometries are optimized at the hybrid B3LYP level with 6-31+g(d, p) basis set in the Gaussian 09 program. The two-photon absorption cross sections are calculated by response theory using the B3LYP functional with 6-31g(d) and 6-31+g(d) basis sets respectively in the Dalton program. In response theory, the single residue of the quadratic response function is used to identify the two-photon transition matrix element. Using the same methods, the two-photon absorption properties of distyrylbenzene compounds are computed for comparison. The basis set effects on excitation energies and two-photon absorption cross sections have been checked. It is found that the use of large basis sets could probably provide better numerical results, but the overall property trends would not change. Calculations show that the molecule with a triphenylamine group has the largest cross-section due to its strong donor groups. The divinyl sulfones-based dyes have larger cross-sections than the corresponding sulfides-based ones, because divinyl sulfones have stronger capability to accept electrons and at the same time the torsional angles between benzene rings in sulfones-based molecules are smaller than in the sulfides-based molecules. In the applicable wavelength range, these new dyes exhibit large two-photon absorption cross-sections which have the same order of magnitude as the strong two-photon absorption molecules with similar conjugation length. The largest cross section comes to 1613.3 GM calculated by using 6-31g(d) basis set. Molecular orbitals involved in the strongest two-photon absorption excitations are plotted and the charge transfer process is analyzed at length. The divinyl sulfide and sulfone centers behave as electron withdrawing groups and can form effective charge transfer molecules. On the basis of these new molecules, the structure inducing two-photon absorption enhancement is designed by employing isomerism effect. When the benzene rings of carbazole groups are connected with the molecular center, the planarity and charge transfer intensity are increased, and then the two-photon absorption cross-section can be improved dramatically. This study provides theoretical guidelines for the synthesis of new type of active two-photon absorption materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.