Flexible pressure sensors have many potential applications in wearable electronics, robotics, health monitoring, and more. In particular, liquid-metalbased sensors are especially promising as they can undergo strains of over 200% without failure. However, current liquid-metal-based strain sensors are incapable of resolving small pressure changes in the few kPa range, making them unsuitable for applications such as heart-rate monitoring, which require a much lower pressure detection resolution. In this paper, a microfluidic tactile diaphragm pressure sensor based on embedded Galinstan microchannels (70 µm width × 70 µm height) capable of resolving sub-50 Pa changes in pressure with sub-100 Pa detection limits and a response time of 90 ms is demonstrated. An embedded equivalent Wheatstone bridge circuit makes the most of tangential and radial strain fields, leading to high sensitivities of a 0.0835 kPa −1 change in output voltage. The Wheatstone bridge also provides temperature self-compensation, allowing for operation in the range of 20-50 °C. As examples of potential applications, a polydimethylsiloxane (PDMS) wristband with an embedded microfluidic diaphragm pressure sensor capable of real-time pulse monitoring and a PDMS glove with multiple embedded sensors to provide comprehensive tactile feedback of a human hand when touching or holding objects are demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.