In the transition-metal-catalyzed cross-coupling reactions, the use of the first row transition metals as catalysts is much more appealing than the precious metals owing to the apparent advantages such as cheapness and earth abundance. Within the last two decades, particularly the last five years, explosive interests have been focused on the nickel-catalyzed Suzuki-Miyaura reactions. This has greatly advanced the chemistry of transition-metal-catalyzed cross-coupling reactions. Most notably, a broad range of aryl electrophiles such as phenols, aryl ethers, esters, carbonates, carbamates, sulfamates, phosphates, phosphoramides, phosphonium salts, and fluorides, as well as various alkyl electrophiles, which are conventionally challenging, by applying palladium catalysts can now be coupled efficiently with boron reagents in the presence of nickel catalysts. In this review, we would like to summarize the progress in this reaction.
We present the enantioselective synthesis of P-stereogenic phosphinamides through Pd-catalyzed desymmetric ortho C-H arylation of diarylphosphinamides with boronic esters. The method represents the first example of the synthesis of P-stereogenic phosphorus compounds via the desymmetric C-H functionalization strategy. The reaction proceeded efficiently with a wide array of reaction partners to afford the P-stereogenic phosphinamides in up to 74% yield and 98% ee. The efficiency was further demonstrated by gram scale syntheses. Moreover, the flexible conversion of the P-stereogenic phosphinamides into various types of P-stereogenic phosphorus derivatives was also elaborated. Thus, the protocol provides a novel tool for the efficient and versatile synthesis of P-stereogenic compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.