The SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) gene family affects plant architecture, panicle structure, and grain development, representing key genes for crop improvements. The objective of the present study is to utilize the well characterized SPLs’ functions in rice to facilitate the functional genomics of TaSPL genes. To achieve these goals, we combined several approaches, including genome-wide analysis of TaSPLs, comparative genomic analysis, expression profiling, and functional study of TaSPL3 in rice. We established the orthologous relationships of 56 TaSPL genes with the corresponding OsSPLs, laying a foundation for the comparison of known SPL functions between wheat and rice. Some TaSPLs exhibited different spatial–temporal expression patterns when compared to their rice orthologs, thus implicating functional divergence. TaSPL2/6/8/10 were identified to respond to different abiotic stresses through the combination of RNA-seq and qPCR expression analysis. Additionally, ectopic expression of TaSPL3 in rice promotes heading dates, affects leaf and stem development, and leads to smaller panicles and decreased yields per panicle. In conclusion, our work provides useful information toward cataloging of the functions of TaSPLs, emphasized the conservation and divergence between TaSPLs and OsSPLs, and identified the important SPL genes for wheat improvement.
The core/shell structured rutile/apatite was prepared by soaking rutile TiO2 (R-TiO2) microspheres into a simulated body fluid (SBF) only for 1 day. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray (EDX) and N2 adsorption measurements. XRD showed that the apatite content increased with prolonging the soaking time or increasing the SBF concentration. TEM and EDX demonstrated that apatite had been coated on the surface of R-TiO2 microspheres successfully. HRTEM indicated that the lattice spacings of 0.27 nm and 0.32 nm were assigned to (211) plane of apatite and (101) plane of R-TiO2, respectively.
Background: The SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) genes encode a family of plant-specific transcription factors that contain a conservative SBP domain. SPL proteins play important roles in plant growth and development, such as plant architecture, flowering regulation, and grain yield. However, the systematic analysis of TaSPL gene family in wheat is lacking.Results: In this study, 56 TaSPL genes were identified from wheat genome and divided into eight groups (G1-G8), according to the phylogenetic analysis of TaSPL proteins among numbers of plant species. Bioinformatics method were applied to analyse the gene structure, motif, chromosome localization, segmental duplication and synteny of total TaSPL genes and the results showed that their characteristics were different among group in the exon-intron constitution, conserved and specific motif. The expansion and evolution of the TaSPL genes occurred within the wheat genome. Total 28 of 56 TaSPL genes were predicted to be putative targets for miR156, which revealed the importance of miR156-mediated regulation in wheat. Moreover, transcript level analysis of TaSPL genes in wheat tissues by qRT-PCR discovered the diversified spatiotemporal expression patterns, based on the comparison with reference RNA-seq data. Some TaSPL genes were subject to various stress treatments including drought and hormones, etc. suggesting that these part genes probably involved in responding to hormone signals during different wheat development stages. Conclusions: Our findings show that TaSPL genes may regulate the development of spike and grain, resistance to abiotic stresses, and involve in responding to hormone signals. These results could provide a fundamentally information to further study of the functions of TaSPL genes in wheat growth and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.