The adaptive radiation of cichlid fishes in East African Lake Malawi encompasses over 500 species that are believed to have evolved within the last 800,000 years from a common founder population. It has been proposed that hybridization between ancestral lineages can provide the genetic raw material to fuel such exceptionally high diversification rates, and evidence for this has recently been presented for the Lake Victoria region cichlid superflock. Here, we report that Lake Malawi cichlid genomes also show evidence of hybridization between two lineages that split 3–4 Ma, today represented by Lake Victoria cichlids and the riverine Astatotilapia sp. “ruaha blue.” The two ancestries in Malawi cichlid genomes are present in large blocks of several kilobases, but there is little variation in this pattern between Malawi cichlid species, suggesting that the large-scale mosaic structure of the genomes was largely established prior to the radiation. Nevertheless, tens of thousands of polymorphic variants apparently derived from the hybridization are interspersed in the genomes. These loci show a striking excess of differentiation across ecological subgroups in the Lake Malawi cichlid assemblage, and parental alleles sort differentially into benthic and pelagic Malawi cichlid lineages, consistent with strong differential selection on these loci during species divergence. Furthermore, these loci are enriched for genes involved in immune response and vision, including opsin genes previously identified as important for speciation. Our results reinforce the role of ancestral hybridization in explosive diversification by demonstrating its significance in one of the largest recent vertebrate adaptive radiations.
The adaptive radiation of cichlid fishes in East Afrian Lake Malawi encompasses over 500 species that are believed to have evolved within the last 800 thousand years from a common founder population. It has been proposed that hybridisation between ancestral lineages can provide the genetic raw material to fuel such exceptionally high diversification rates, and evidence for this has recently been presented for the Lake Victoria Region cichlid superflock.Here we report that Lake Malawi cichlid genomes also show evidence of hybridisation between two lineages that split 3-4 million years ago, today represented by Lake Victoria cichlids and the riverine Astatotilapia sp. 'ruaha blue'. The two ancestries in Malawi cichlid genomes are present in large blocks of several kilobases, but there is little variation in this pattern between Malawi cichlid species, suggesting that the large-scale mosaic structure of the genomes was largely established prior to the radiation. Nevertheless, tens of thousands of polymorphic variants apparently derived from the hybridisation are interspersed in the genomes. These loci show a striking excess of differentiation across ecological subgroups in the Lake Malawi cichlid assemblage, and parental alleles sort differentially into benthic and pelagic Malawi cichlid lineages, consistent with strong differential selection on these loci during species divergence. Furthermore, these loci are enriched for genes involved in immune response and vision, including opsin genes previously identified as important for speciation. Our results reinforce the role of ancestral hybridisation in explosive diversification by demonstrating its significance in one of the largest recent vertebrate adaptive radiations.Recent advances in genome sequencing have provided empirical evidence that ancestral hybridisation can occur prior to adaptive radiation (Barrier et al. 1999) and can generate phenotypic novelty (Stryjewski and Sorenson 2017) . A group of species that has received considerable attention with
Chromatin immunoprecipitation-sequencing (ChIP-seq) is a robust technique to study interactions between proteins, such as histones or transcription factors and DNA. This technique in combination with RNA-sequencing (RNA-seq) is a powerful tool to better understand biological processes in eukaryotes. We developed a combined ChIP-seq and RNA-seq protocol for tree buds (Prunus avium L., Prunus persica L Batch, Malus x domestica Borkh.) that has also been successfully tested on Arabidopsis thaliana and Saccharomyces cerevisiae. Tree buds contain phenolic compounds that negatively interfere with ChIP and RNA extraction. In addition to solving this problem, our protocol is optimised to work on small amounts of material. Furthermore, one of the advantages of this protocol is that samples for ChIP-seq are cross-linked after flash freezing, making it possible to work on trees growing in the field and to perform ChIP-seq and RNA-seq on the same starting material. Focusing on dormant buds in sweet cherry, we explored the link between expression level and H3K4me3 enrichment for all genes, including a strong correlation between H3K4me3 enrichment at the DORMANCY-ASSOCIATED MADS-BOX 5 (PavDAM5) loci and its expression pattern. This protocol will allow analysis of chromatin and transcriptomic dynamics in tree buds, notably during its development and response to the environment. Keywords Tree buds. ChIP-seq/chromatin Immunoprecipitation-sequencing. RNA-seq/RNA-sequencing. Prunus avium L.. Prunus persica L batch. Malus x domestica Borkh Key message: We developed a combined ChIP-seq and RNA-seq protocol for tree buds; optimised to work on small amount of material and on samples flash frozen in the field, and explored the link between expression level and H3K4me3 enrichment.
Chromatin immunoprecipitation-sequencing (ChIP-seq) is a robust technique to study interactions between proteins, such as histones or transcription factors, and DNA. This technique in combination with RNA-sequencing (RNA-seq) is a powerful tool to better understand biological processes in eukaryotes. We developed a combined ChIP-seq and RNA-seq protocol for tree buds (Prunus avium L., Prunus persica L Batch, Malus x domestica Borkh.) that has also been successfully tested on Arabidopsis thaliana and Saccharomyces cerevisiae. Tree buds contain phenolic compounds that negatively interfere with ChIP and RNA extraction. In addition to solving this problem, our protocol is optimised to work on small amounts of material. Furthermore, one of the advantages of this protocol is that samples for ChIP-seq are cross-linked after flash freezing, making it possible to work on trees growing in the field and to perform ChIP-seq and RNA-seq on the same starting material. Focusing on dormant buds in sweet cherry, we explored the link between expression level and H3K4me3 enrichment for all genes, including a strong correlation between H3K4me3 enrichment at the DORMANCY-ASSOCIATED MADS-box 5 (PavDAM5) loci and its expression pattern. This protocol will allow analysis of chromatin and transcriptomic dynamics in tree buds, notably during its development and response to the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.