Abstract:The microstructure and mechanical properties of Al/Cu ultrasonic welding joints were investigated. Results show that: (i) the joint strength increased when the welding time increased within a certain range, and a maximal resistant force of 163.04 N was obtained when the welding duration and welding static pressure were 200 ms and 7.2 MPa, respectively; (ii) with a further increase of welding time, the bonding interface was gradually occupied by a thick strip layer of brittle Al 2 Cu (θ 2 ) phase, thus decreasing the strength; (iii) the maximum temperature in the welding region was 360 • C during the welding process, and a recrystallization phenomenon was identified near the welding interface; (iv) the average nanohardness of Cu, the Cu-Al interfacial reaction layer and Al were 1.04 GPa, 1.34 GPa, and 0.53 GPa, respectively, which is consistent with the formation of the intermetallic compound identified by energy-dispersive X-ray spectroscopy (EDS) and XRD analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.