Evolution processes of graphite morphology in ductile iron were investigated by quenching specimens during a long time holding of iron melt in a Ar atmosphere. Results show that spheroidal graphite is only observed at the early stage of melt holding. There are no evident changes in morphology of spheroidal graphite with increasing holding time up to 180 min. Subsequently chunky graphite precipitates directly after holding for 240 min as spheroidizing ability (Mg residual and RE residual) is insufficient. The number and size of eutectic chunky graphite cells increase with prolonged holding time. It should be noted that vermicular graphite forms around eutectic chunky graphite cells after holding for 360 min. When holding time reaches 420 min, graphite morphology is flake-like together with some chunky graphite. The graphite morphology in ductile iron changes from spherical to chunky, then chunky to vermicular, finally to flake with an increase in melt holding time. Both spheroidizing ability and numbers of effective nucleus decrease with prolonged holding time of melt, which affect graphite morphology.
The effects of melting process on Zr content and grain size in ZE41A alloy were investigated in this study. The results show that the soluble Zr increases with the increased addition content of Mg-Zr master, up to 0.87%. The ratio of Zr addition content to soluble Zr content changes within 3.86-4.8. The melt temperature has little effect on soluble Zr content. Grain size grows and both soluble Zr and total Zr decrease with the prolonged isothermal holding of the melt.
The effects of cooling condition on the Zr-rich core formation and grain size in Mg-Zr alloys were investigated in this study. Four moulds with various cooling rates and different Zr additions were used. The results show that when Zr addition was 1.2%, the Zr-rich cores were round and their diameters increased with decreased cooling rates. When Zr addition content was decreased to 0.7%, Zr-rich cores formed only in the sand mould with the lowest cooling rate used in this study, and the morphology changed to rosette-like. The influence of cooling rate on grain size of Mg-Zr alloys was also investigated.
Al-10.5Zn-2.0Mg-1.5Cu alloy was produced by spray forming (SF) technique. The initial microstructure, particularly secondary phases, present in the as-SFed alloy was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with attached energy dispersive X-ray spectroscopy (EDS). The results indicated that the equiaxed α-Al grains have an average size of about 18-20 μm in diameter. The intergranular phase was identified as MgZn2 by selected area electron diffraction (SAED) pattern, which was also distributed in the grain interior as well as Al2Mg3Zn3. A needle-like Al23Cu(FeCrMn)4 precipitate was detected. The combined analysis of morphology and crystallographic structure suggested that the Al23Cu(FeCrMn)4 grew along its long axis of <001> orientation. The refinement of the intergranular phases occurred, which is probably due to a decreased amount of eutectic liquid phase finally solidifying on a large area of grain boundaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.