The interactions of bovine serum albumin (BSA) with two alkylimidazolium-based ionic liquids, 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim]BF 4 ) and 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF 6 ), in buffer solutions at pH 7.0 were investigated by isothermal titration calorimetry (ITC) and circular dichroism (CD). CD spectra showed that the two ionic liquids changed the secondary structure of BSA. Data process was based on the supposition that there were several independent types of binding sites on each BSA molecule for the two ligand molecules. The results obtained by using this supposition combined with Langmuir adsorption model showed that there were two types of such binding sites. One was the high affinity binding site, and the other was the low affinity binding site. The binding constants, changes in enthalpy, entropy and Gibbs free energy for the two types of binding were obtained, which showed that the two types of binding were driven by a favorable entropy increase. Furthermore, for either the ionic liquids, the number of the high affinity binding sites is much smaller than that of the low affinity ones. These results were interpreted with the molecular structure of BSA and the different substituent groups on imidazole ring of the two ionic liquid molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.