Objective: An understanding of functional interhemispheric asymmetry in ischemic stroke patients is a crucial factor in the designs of efficient programs for post-stroke rehabilitation. This study evaluates interhemispheric synchronization and cortical activities in acute stroke patients with various degrees of severity and at different post-stroke stages. Approach: Twenty-three patients were recruited to participate in the experiments, including resting-state and speed finger-tapping tasks at week-1 and week-3 post-stroke. Multichannel near-infrared spectroscopy (NIRS) was used to measure the changes in hemodynamics in the bilateral prefrontal cortex (PFC), the supplementary motor area (SMA), and the sensorimotor cortex (SMC). The interhemispheric correlation coefficient (IHCC) measuring the synchronized activities in time and the wavelet phase coherence (WPCO) measuring the phasic activity in time-frequency were used to reflect the symmetry between the two hemispheres within a region. The changes in oxyhemoglobin during the finger-tapping tasks were used to present cortical activation. Main results: IHCC and WPCO values in the severe-stroke were significantly lower than those in the minor-stroke at low frequency intervals during week-3 post-stroke. Cortical activation in all regions in the affected hemisphere was significantly lower than that in the unaffected hemisphere in the moderate-severe stroke measured in week-1, however, the SMC activation on the affected hemisphere was significantly enhanced in week-3 post-stroke. Significance: In this study, non-invasive NIRS was used to observe dynamic synchronization in the resting-state based on the IHCC and WPCO results as well as hemodynamic changes in a motor task in acute stroke patients. The findings suggest that NIRS could be used as a tool for early stroke assessment and evaluation of the efficacy of post-stroke rehabilitation.
Objective Global trends, such as improving accessibility to healthcare services through the Internet, and the COVID-19 pandemic are among the driving factors in the adoption of digital health. This study hypothesized that digital solutions can reach and gather data from a large number of patients with trigeminal neuralgia (TN), a commonly misdiagnosed neuropathic facial pain syndrome, and quickly and fast-track their diagnosis by suggesting them to consult a neurologist. We developed an accessible digital screening tool based on patient symptoms and history to test this hypothesis and used social media advertisement to screen a general population for TN. Methods The standard diagnostic criteria, International Classification of Orofacial Pain, for facial pain is digitized as a web-based questionnaire that allows easy access to the evaluation for patients with suspected TN symptoms. Targeted search with relevant keywords and display campaigns on Google search engine and Facebook social media platform were used to reach large numbers of subjects. A report was autogenerated, which included a summary of a subject's symptoms, likely or likely not TN diagnosis, and information to seek appropriate medical assistance. Results The website was live for seven weeks and generated 240 screening questionnaire submissions, with a total spending of $2482. Forty-four subjects (18.3%) that reported typical symptoms of TN experienced unilateral and episodic pain in one of the trigeminal nerve regions. Conclusions We have demonstrated the feasibility of social media advertisement and digitally screening a general population for TN, gathering valuable clinical data, such as pain characteristics, through a web-based questionnaire. Based on these data, patients with similar symptoms of TN are suggested to consult a neurologist for diagnosis. This study provides a framework for using digital screening tools to improve the healthcare experience of patients who would spend several months before finding appropriate diagnosis for their specific conditions.
Background. Various forms of theta-burst stimulation (TBS) such as intermittent TBS (iTBS) and continuous TBS (cTBS) have been introduced as novel facilitation/suppression schemes during repetitive transcranial magnetic stimulation (rTMS), demonstrating a better efficacy than conventional paradigms. Herein, we extended the rTMS-TBS schemes to electrical stimulation of high-definition montage (HD-TBS) and investigated its neural effects on the human brain. Methods. In a within-subject design, fifteen right-handed healthy adults randomly participated in 10 min and 2 mA HD-TBS sessions: unilateral (Uni)-iTBS, bilateral (Bi)-cTBS/iTBS, and sham stimulation over primary motor cortex regions. A 20-channel near-infrared spectroscopy (NIRS) system was covered on the bilateral prefrontal cortex (PFC), sensory motor cortex (SMC), and parietal lobe (PL) for observing cerebral hemodynamic responses in the resting-state and during fast finger-tapping tasks at pre-, during, and poststimulation. Interhemispheric correlation coefficient (IHCC) and wavelet phase coherence (WPCO) from resting-state NIRS and concentration of oxyhemoglobin during fast finger-tapping tasks were explored to reflect the symmetry between the two hemispheres and cortical activity, respectively. Results. The IHCC and WPCO of NIRS data in the SMC region under Bi-cTBS/iTBS showed relatively small values at low-frequency bands III (0.06–0.15 Hz) and IV (0.02–0.06), indicating a significant desynchronization in both time and frequency domains. In addition, the SMC activation induced by fast finger-tapping exercise was significantly greater during Uni-iTBS as well as during and post Bi-cTBS/iTBS sessions. Conclusions. It appears that a 10 min and 2 mA Bi-cTBS/iTBS applied over two hemispheres within the primary motor cortex region could effectively modulate the interhemispheric synchronization and cortical activation in the SMC of healthy subjects. Our study demonstrated that bilateral HD-TBS approaches is an effective noninvasive brain stimulation scheme which could be a novel therapeutic for inducing effects of neuromodulation on various neurological disorders caused by ischemic stroke or traumatic brain injuries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.