A laboratory experiment was run for 171 days to assess growth and survivorship of recently settled juveniles of the green sea urchin, Strongylocentrotus droebachiensis (Müller), reared at five temperatures: 4.7±0.8, 9.0±1.1, 12.9±1.1, 16.0±1.5 and 19.7±1.3°C (mean±SD, n=7942). Individual sea urchins were housed separately in PVC pots with Nitex mesh bottoms (10 per tank and five replicate tanks per temperature treatment) and fed a combination of benthic diatoms and macroalgae (Porphyra sp.). The test diameter of each urchin was measured and survivorship recorded on a monthly basis. Mean (±SE) test diameter of all individuals at the beginning of the experiment was 2.41±0.03 mm (n=250). At the end of the experiment, mean test diameter (±SE) was significantly larger at 9.0°C (8.46±0.06 mm) and 12.9°C (8.20±0.25 mm) than at 4.7°C (7.27±0.05 mm), 16.0°C (6.72±0.17 mm) and 19.7°C (2.65±0.24 mm) and significantly larger at 4.7 and 16.0°C than at 19.7°C. When growth was expressed as a per cent increase in test diameter from the start of the experiment, however, there were no significant pair‐wise differences among 4.7, 9.0, 12.9 and 16.0°C treatments at the end of the experiment, but all these treatments were significantly greater than at 19.7°C. Mean per cent survivorship (±SE) at the end of the experiment for the various temperature treatments was 76.0±6.0%, 90.0±5.5%, 100.0±0.0%, 98.0±2.0% and 26.0±11.2% at 4.7, 9.0, 12.9, 16.0 and 19.7°C respectively. Per cent survivorship was significantly greater at 4.7, 9.0, 12.9 and 16.0°C than at 19.7°C and significantly greater at 12.9 and 16.0°C than at 4.7°C. Mean area increase of urchins per replicate tank at the end of the experiment – taking into account both test diameter growth and survivorship – was significantly larger at 9.0 and 12.9°C than at 4.7, 16.0 and 19.7°C, and significantly larger at 4.7 and 16.0°C than at 19.7°C. The results of this study suggest that young juveniles of S. droebachiensis should be reared at 9–13°C in order to optimize production for aquaculture.
A FLiNaK high temperature test loop, which was designed to support the Thorium Molten Salt Reactor (TMSR) program, was constructed in 2012 and is the largest engineering-scale fluoride loop in the world. The loop is built of Hastelloy C276 and is capable of operating at the flow rate up to 25m3/h and at the temperature up to 650°C. It consists of an overhung impeller sump-type centrifugal pump, an electric heater, a heat exchanger, a freeze valve and a mechanical one, a storage tank, etc. Salt purification was conducted in batch mode before it was transferred to and then stored in the storage tank. The facility was upgraded in three ways last year, with aims of testing a 30kW electric heater and supporting the heat transfer experiment in heat exchanger. Firstly, an original 100kW electric heater was replaced with a 335kW one to compensate the overlarge heat loss in the radiator. A pressure transmitter was subsequently installed in the inlet pipe of this updated heater. Finally, a new 30kW electric heater was installed between the pump and radiator, the purpose of which was to verify the core’s convective heat transfer behavior of a simulator design of TMSR. Immediately after these above works, shakedown test of the loop was carried out step by step. At first the storage tank was gradually preheated to 500°C so as to melt the frozen salt. Afterwards, in order to make the operation of transferring salt from storage tank to loop achievable, the loop system was also preheated to a relatively higher temperature 530°C. Since the nickel-base alloy can be severely corroded by the FLiNaK salt once the moisture and oxygen concentration is high, vacuum pumping and argon purging of the entire system were alternatively performed throughout the preheating process, with the effect of controlling them to be lower than 100ppm. Once the salt was transferred into the loop, the pump was immediately put into service. At the very beginning of operation process, it was found that flow rate in the main piping could not be precisely measured by the ultrasonic flow meter. Ten days later, the pump’s dry running gas seal was out of order. As a result, the loop had to be closed down to resolve these issues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.