In this article, the flow of ternary nanofluid is analysed past a stretching sheet subjected to Thomson and Troian slip condition along with the temperature jump. The ternary nanofluid is formed by suspending three different types of nanoparticles namely $$\text{TiO}_{2}, \text{Cu}$$
TiO
2
,
Cu
and $$\text{Ag}$$
Ag
into water which acts as a base fluid and leads to the motion of nanoparticles. The high thermal conductivity and chemical stability of silver was the main cause for its suspension as the third nanoparticle into the hybrid nanofluid $$\text{Cu-TiO}_{2}/\text{H}_{2} \text{O}$$
Cu-TiO
2
/
H
2
O
. Thus, forming the ternary nanofluid $$\text{Ag-Cu-TiO}_{2}/\text{H}_{2} \text{O}$$
Ag-Cu-TiO
2
/
H
2
O
. The sheet is assumed to be vertically stretching where the gravitational force will have its impact in the form of free convection. Furthermore, the presence of radiation and heat source/sink is assumed so that the energy equation thus formed will be similar to most of the real life applications. The assumption mentioned here leads to the mathematical model framed using partial differential equations (PDE) which are further transformed to ordinary differential equations (ODE) using suitable similarity transformations. Thus, obtained system of equations is solved by incorporating the RKF-45 numerical technique. The results indicated that the increase in the suspension of silver nanoparticles enhanced the temperature and due to density, the velocity of the flow is reduced. The slip in the velocity decreased the flow speed while the temperature of the nanofluid was observed to be increasing.
PurposeDigital computing and machine learning-driven predictive analysis in the diagnosis of non-communicable diseases are gaining significance. Globally many research studies are focusing on developing comprehensive models for such detection. Categorically in the proposed diagnosis for arrhythmia, which is a critical diagnosis to prevent cardiac-related deaths, any constructive models can be a value proposition. In this study, the focus is on developing a holistic system that predicts the scope of arrhythmia from the given electrocardiogram report. The proposed method is using the sequential patterns of the electrocardiogram elements as features.Design/methodology/approachConsidering the decision accuracy of the contemporary classification methods, which is not adequate to use in clinical practices, this manuscript coined a new dimension of features to perform supervised learning and classification using the AdaBoost classifier. The proposed method has titled “Electrocardiogram stream level correlated patterns as features (ESCPFs),” which takes electrocardiograms (ECGs) signal streams as input records to perform supervised learning-based classification to detect the arrhythmia scope in given ECG record.FindingsFrom the results and comparative reports generated for the study, it is evident that the model is performing with higher accuracy compared to some of the earlier models. However, focusing on the emerging solutions and technologies, if the accuracy factors for the model can be improved, it can lead to compelling predictions and accurate outcome from the process.Originality/valueThe authors represent complete automatic and rapid arrhythmia as classifier, which could be applied online and examine long ECG records sequence efficiently. By releasing the needs for extraction of features, the authors project an application based on raw signals, one result to heart rates date, whose objective is to lessen computation time when attaining minimum classification error outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.