Antibacterial treatment has grown difficult due to the increasing growth in bacterial infections, as well as their tolerance to most first-line antibiotics. This is a severe danger to the world’s human health in the 21st century, necessitating further research to identify drugs with improved antibacterial effects and broad-spectrum functions. This study aimed to discover anti-bacterial agents through the molecular docking and in silico approach. Most responsive thirty (32) compounds on UPLC-Q-TOF/MS analysis were selected from our previous report to get the hit compound(s) against inhibition of cell wall synthesis, inhibition of protein synthesis, interference with nucleic acid synthesis, inhibition of a metabolic pathway, inhibition of membrane function and inhibition of adenosine triphosphate (ATP) synthase. From the molecular docking results, we afforded six compounds for cell wall synthesis protein, four compounds for protein synthesis protein, five for nucleic acid synthesis protein, three for metabolic pathway protein, four for membrane function protein and three for ATP synthase protein which eventually undergoes the pharmacokinetic and drug-likeness properties to obtain lead compound(s). Finally, we discovered that compounds Turpinionosides B, Polydatin, Ledebouriellol, and Pterodontoside A have the strongest binding interactions with cell wall synthesis, inhibition of protein synthesis and inhibition of metabolic pathway synthesis, interference with nucleic acid synthesis and inhibition of ATP synthase, inhibition of membrane function proteins, respectively. These compounds have the potential to become an anti-bacterial therapeutic candidate due to their promising pharmacological properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.