High quality triethanolamine-coated Fe 3 O 4 nanocrystals can be prepared by a novel complex-coprecipitation route based on the use of triethanolamine as ligands to the iron precursors. These nanocrystals show high saturation magnetizations and excellent Cr(VI) removal performances.In the past decade, magnetite (Fe 3 O 4 ) nanocrystals (NCs) have attracted much attention due to their unique chemical and physical properties. These inherent properties make their current and promising applications in magnetic ferrofluids, magnetic response imaging and sensing, biomedical drug delivery, catalysis and other applications of magnetic nanomaterials.
A layered perovskite EuBaCo2O5+δ (EBCO) has been prepared by a solid‐state reaction, and evaluated as potential cathode for intermediate‐temperature solid oxide fuel cells. Structural characterizations are determined at room temperature using powder X‐ray diffraction and transmission electron microscopy technique. The good fits to the XRD data by Rietveld refinement method are obtained in the orthorhombic space group (Pmmm). The lower average thermal expansion coefficient, 14.9 × 10–6 °C–1 between 100 and 800 °C, indicates its better thermal expansion compatibility with conventional electrolytes, compared with the other cobalt‐containing cathode materials. The high electrical conductivity and large oxygen nonstoichiometry at intermediate temperatures suggest the effective charge transfer reactions including electron conduction and oxide‐ion motion in cathode. As a result, a highly electrochemical activity towards the oxygen reduction reaction is achieved between 600 and 700 °C, as evidenced by low area‐specific resistances, e.g. 0.14–0.5 Ω cm2. In addition, cathodic overpotential and oxygen reduction kinetics of the EBCO cathode have also been studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.