To identify susceptibility variants for hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), we conducted a genome-wide association study by genotyping 440,794 SNPs in 355 chronic HBV carriers with HCC and 360 chronic HBV carriers without HCC, all of Chinese ancestry. We identified one intronic SNP (rs17401966) in KIF1B on chromosome 1p36.22 that was highly associated with HBV-related HCC and confirmed this association in five additional independent samples, consisting of 1,962 individuals with HCC, 1,430 control subjects and 159 family trios. Across the six studies, the association with rs17401966 was highly statistically significant (joint odds ratio = 0.61, P = 1.7 x 10(-18)). In addition to KIF1B, the association region tagged two other plausible causative genes, UBE4B and PGD. Our findings provide evidence that the 1p36.22 locus confers susceptibility to HBV-related HCC, and suggest that KIF1B-, UBE4B- or PGD-related pathways might be involved in the pathogenesis of this malignancy.
BackgroundGastrointestinal pan-adenocarcinomas, which mainly include adenocarcinomas of the esophagus, stomach, colon, and rectum, place a heavy burden on society owing to their poor prognoses. Since aberrant alternative splicing (AS) are starting to be considered as efficacious signatures for tumor prognosis predicting and therapeutic targets, systematic analysis of AS events is urgent.MethodsPrognosis-related AS events were selected by using univariate COX regression analysis. Gene functional enrichment analysis revealed the pathways enriched by prognosis-related AS. Then, prognostic signatures based on AS events were developed for prognosis prediction. Potential mechanism to regulate splicing events by splicing factors was analyzed via Pearson correlation and regulatory networks were constructed.FindingsA total of 967, 918, 674, and 406 AS events were identified as prognosis-related AS events in esophagus, stomach, colon, and rectum adenocarcinomas, respectively. Survival-associated AS events were distinguishing in the four subtypes of adenocarcinoma. Furthermore, computational algorithm results indicated that perturbation of ribosome and ubiquitin-mediated proteolysis pathways were the potential molecular mechanisms corresponding to inferior prognoses. Most notably, several prognostic signatures based on AS events displayed moderate performance in prognosis predicting. The area under curve values of the time-dependent receiver operating characteristic were 0.961, 0.871, 0.870, and 0.890 in esophagus, stomach, colon, and rectum adenocarcinomas. Survival-associated splicing factors were submitted to construct the AS regulatory network, which could be an underlying mechanism of AS events.InterpretationAS may could be ideal indiactors in the prognosis of gastrointestinal pan-adenocarcinomas. Exploring interesting splicing regulatory networks is conducive to solve the puzzles of AS.
Background/Aims: Long noncoding RNAs (lncRNAs) contribute to the development of multiple malignant tumors. Here, we focused on the biological function and underlying molecular mechanism of an lncRNA, nuclear-enriched abundant transcript 1 (NEAT1), in lung adenocarcinoma (LUAD). Methods: In vitro experiments were conducted to determine the biological effects of NEAT1 in LUAD cells. A luciferase activity reporter assay was performed to corroborate the interaction between NEAT1 and miR-193a-3p. Data from Gene Expression Omnibus (GEO), Oncomine, The Cancer Genome Atlas (TCGA), and our in-house reverse transcription quantitative PCR (RT-qPCR) were combined to examine the expression of NEAT1 and miR-193a-3p in LUAD. To further explore the regulatory mechanism of NEAT1, we searched for putative target genes of miR-193a-3p from 12 online prediction databases and determined genes positively correlated with NEAT1 as candidate targets. Furthermore, we analyzed the expression of these selected genes using data from TCGA. Results: In vitro experiments showed that knockdown of NEAT1 in LUAD cells markedly restrained cell proliferation, invasion, and migration and stimulated cell apoptosis. The dual-luciferase reporter assay demonstrated that miR-193a-3p directly targeted NEAT1 at its 3’-UTR. We then detected NEAT1 and miR-193a-3p in LUAD cells and normal lung epithelial cells and discovered high expression of NEAT1 and low expression of miR-193a-3p in LUAD cell lines. Simultaneously, the pooled results from the GEO, Oncomine, TCGA, and in-house RT-qPCR showed that the NEAT1 expression increased while the miR-193a-3p expression decreased in LUAD tissues versus normal lung tissues. Furthermore, the USF1 gene was not only upregulated in LUAD, but also positively correlated with NEAT1, suggesting that NEAT1 may function as a ceRNA to sponge miR-193a-3p and abrogate the inhibitory effect of miR-193a-3p on USF1. Conclusions: Our findings indicate that NEAT1 plays important roles in the occurrence and progression of LUAD. It may exert its role by acting as a ceRNA to regulate miR-193a-3p.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.