Artificial intelligence and distributed algorithms have been widely used in mechanical fault diagnosis with the explosive growth of diagnostic data. A novel intelligent fault diagnosis system framework that allows intelligent terminals to offload computational tasks to Mobile edge computing (MEC) servers is provided in this paper, which can effectively address the problems of task processing delays and enhanced computational complexity. As the resources at the MEC and intelligent terminals are limited, performing reasonable resource allocation optimization can improve the performance, especially for a multi-terminals offloading system. In this study, to minimize the task computation delay, we jointly optimize the local content splitting ratio, the transmission/computation power allocation, and the MEC server selection under a dynamic environment with stochastic task arrivals. The challenging dynamic joint optimization problem is formulated as a reinforcement learning (RL) problem, which is designed as the computational offloading policies to minimize the long-term average delay cost. Two deep RL strategies, deep Q-learning network (DQN) and deep deterministic policy gradient (DDPG), are adopted to learn the computational offloading policies adaptively and efficiently. The proposed DQN strategy takes the MEC selection as a unique action while using the convex optimization approach to obtain the local content splitting ratio and the transmission/computation power allocation. Simultaneously, the actions of the DDPG strategy are selected as all dynamic variables, including the local content splitting ratio, the transmission/computation power allocation, and the MEC server selection. Numerical results demonstrate that both proposed strategies perform better than the traditional non-learning schemes. The DDPG strategy outperforms the DQN strategy in all simulation cases exhibiting minimal task computation delay due to its ability to learn all variables online.
The remaining useful life (RUL) of bearings based on deep learning methods has been increasingly used. However, there are still two obstacles in deep learning RUL prediction: (1) the training process of the deep learning model requires enough data, but run-to-failure data are limited in the actual industry; (2) the mutual dependence between RUL predictions at different time instants are commonly ignored in existing RUL prediction methods. To overcome these problems, a RUL prediction method combining the data augmentation strategy and Wiener–LSTM network is proposed. First, the Sobol sampling strategy is implemented to augment run-to-failure data based on the degradation model. Then, the Wiener–LSTM model is developed for the RUL prediction of bearings. Different from the existing LSTM-based bearing RUL methods, the Wiener–LSTM model utilizes the Wiener process to represent the mutual dependence between the predicted RUL results at different time instants and embeds the Wiener process into the LSTM to control the uncertainty of the result. A joint optimization strategy is applied in the construction of the loss function. The efficacy and superiority of the proposed method are verified on a rolling bearing dataset obtained from the PRONOSTIA platform. Compared with the conventional bearing RUL prediction methods, the proposed method can effectively augment the bearing run-to-failure data and, thus, improve the prediction results. Meanwhile, fluctuations of the bearing RUL prediction result are significantly suppressed by the proposed method, and the prediction errors of the proposed method are much lower than other comparative methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.