Litchi has diverse fruit color phenotypes, yet no research reflects the biochemical background of this diversity. In this study, we evaluated 12 litchi cultivars for chromatic parameters and pigments, and investigated the effects of abscisic acid, forchlorofenron (CPPU), bagging and debagging treatments on fruit coloration in cv. Feizixiao, an unevenly red cultivar. Six genes encoding chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS) and UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) were isolated from the pericarp of the fully red litchi cv. Nuomici, and their expression was analyzed in different cultivars and under the above mentioned treatments. Pericarp anthocyanin concentration varied from none to 734 mg m−2 among the 12 litchi cultivars, which were divided into three coloration types, i.e. non-red (‘Kuixingqingpitian’, ‘Xingqiumili’, ‘Yamulong’and ‘Yongxing No. 2′), unevenly red (‘Feizixiao’ and ‘Sanyuehong’) and fully red (‘Meiguili’, ‘Baila’, Baitangying’ ’Guiwei’, ‘Nuomici’ and ‘Guinuo’). The fully red type cultivars had different levels of anthocyanin but with the same composition. The expression of the six genes, especially LcF3H, LcDFR, LcANS and LcUFGT, in the pericarp of non-red cultivars was much weaker as compared to those red cultivars. Their expression, LcDFR and LcUFGT in particular, was positively correlated with anthocyanin concentrations in the pericarp. These results suggest the late genes in the anthocyanin biosynthetic pathway were coordinately expressed during red coloration of litchi fruits. Low expression of these genes resulted in absence or extremely low anthocyanin accumulation in non-red cultivars. Zero-red pericarp from either immature or CPPU treated fruits appeared to be lacking in anthocyanins due to the absence of UFGT expression. Among these six genes, only the expression of UFGT was found significantly correlated with the pericarp anthocyanin concentration (r = 0.84). These results suggest that UFGT played a predominant role in the anthocyanin accumulation in litchi as well as pericarp coloration of a given cultivar.
Plant grafting has been practiced widely in horticulture and proved as a useful tool in science. However, the mechanisms of graft healing or graft incompatibility remain poorly understood. In this study, Litchi chinensis cv. ‘Jingganghongnuo’ homograft (‘J/J’) and ‘Jingganghongnuo’/‘zhuangyuanhong’ heterograft (‘J/Z’) as compatible and incompatible combination, respectively, was used to study transcriptional changes between incompatible and compatible graft during graft union formation. Anatomical observation indicated that three stages (2 h, 14 d and 21 d after grafting) were critical for graft union formation and selected for high-throughput sequencing. Results indicated 6060 DEGs were differentially expressed in the compatible combination and 5267 DEGs exhibiting in the incompatible one. KEGG pathway enrichment analysis revealed that DEGs were involved in metabolism, wound response, phenylpropanoid biosynthesis and plant hormone signal transduction. The expression of 9 DEGs annotated in auxin pathway was up-regulated in compatible combination than that in incompatible combination. The IAA concentration confirmed that the IAA might promote the graft compatibility. In addition, 13 DEGs related to lignin biosynthesis were differentially expressed during graft healing process. Overall, our results provide abundant sequence resources for studying mechanisms underlying graft compatibility and establish a platform for further studies of litchi and other evergreen fruit trees.
Cell wall invertase (CWIN) are known to play important roles in seed development. However, most reports to date have focused on a single gene family member, and have mainly investigated CWIN functions during the filling stage of seed development. In this study, we found significant lower levels of CWIN protein and activity associated with seed abortion in the Litchi chinensis cultivar “Nuomici.” We identified five litchi CWIN genes and observed that the expression of LcCWIN5 was limited to the flower tissues and decreased sharply with fruit development. Silencing of LcCWIN5 expression before 28 DAA (cell division stage) resulted in perturbed liquid endosperm development, smaller seeds, and higher seed abortion rate, while silencing after 28 DAA (filling stage) had no effect on seed development. In contrast, LcCWIN2 was mostly expressed in the funicle and seed coat, and increased with fruit development. Decreased LcCWIN2 expression and CWIN activity during early seed filling coincided with smaller seeds in the cultivar “Feizixiao.” Silencing of LcCWIN2 caused a reduction in the seed size without inducing seed abortion. We propose that CWIN activity in seed maternal tissues during cell division stage is likely due to LcCWIN5 expression, which regulates early seed development. On the other hand, CWIN activity during the filling stage is due to the expression of LcCWIN2, which may promote carbon import by creating a sucrose gradient. Comparable LcCWIN5 expression, but much lower CWIN activity, detected in the funicle of “Nuomici” is consistent with post-translational regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.