Atomistic machine learning (AML) simulations are used in chemistry at an ever-increasing pace. A large number of AML models has been developed, but their implementations are scattered among different packages, each with its own conventions for input and output. Thus, here we give an overview of our MLatom 2 software package, which provides an integrative platform for a wide variety of AML simulations by implementing from scratch and interfacing existing software for a range of state-of-the-art models. These include kernel method-based model types such as KREG (native implementation), sGDML, and GAP-SOAP as well as neural-network-based model types such as ANI, DeepPot-SE, and PhysNet. The theoretical foundations behind these methods are overviewed too. The modular structure of MLatom allows for easy extension to more AML model types. MLatom 2 also has many other capabilities useful for AML simulations, such as the support of custom descriptors, farthest-point and structure-based sampling, hyperparameter optimization, model evaluation, and automatic learning curve generation. It can also be used for such multi-step tasks as Δ-learning, self-correction approaches, and absorption spectrum simulation within the machine-learning nuclear-ensemble approach. Several of these MLatom 2 capabilities are showcased in application examples.
Quantum-chemistry simulations based on potential energy surfaces of molecules provide invaluable insight into the physicochemical processes at the atomistic level and yield such important observables as reaction rates and spectra....
Atomistic machine learning (AML) simulations are used in chemistry at an everincreasing pace. A large number of AML models has been developed, but their implementations are scattered among different packages, each with its own conventions for input and output. Thus, here we give an overview of our MLatom 2 software package, which provides an integrative platform for a wide variety of AML simulations by implementing from scratch and interfacing existing software for a range of state-of-the-art models. These include kernel method-based model types such as KREG (native implementation), sGDML, and GAP-SOAP as well as neuralnetwork- based model types such as ANI, DeepPot-SE, and PhysNet. The theoretical foundations behind these methods are overviewed too. The modular structure of MLatom allows for easy extension to more AML model types. MLatom 2 also has many other capabilities useful for AML simulations, such as the support of custom descriptors, farthest-point and structure-based sampling, hyperparameter optimization, model evaluation, and automatic learning curve generation. It can also be used for such multi-step tasks as Δ-learning, self-correction approaches, and absorption spectrum simulation within the machine-learning nuclear-ensemble approach. Several of these MLatom 2 capabilities are showcased in application examples.
We demonstrate that artificial intelligence (AI) can learn four-dimensional (4D) atomistic systems in the spacetime continuum. Given the initial conditions – nuclear positions and velocities at time zero – the proposed 4D-atomistic AI (4D-A2I) models can predict nuclear positions at any time in the future or past for the simplest systems as we show for H2. For larger polyatomic molecules, AI is capable of learning distant but finite future as we demonstrate for an ethanol molecule. 4D-A2I models provide direct access to a multitude of properties at a given time such as geometries, velocities, forces, and energies which can be used in simulating physicochemical transformations and spectra. Our approach can be used as a cost-efficient alternative to traditional molecular dynamics. We show an example of a 4D-A2I model describing the dynamical behavior of ethanol at the coupled-cluster level with the speed of one nanosecond simulation time per one hour wall-clock time on a single GPU card – a previously unachievable feat with traditional Born–Oppenheimer molecular dynamics. 4D-A2I model is also demonstrated to provide direct access to atomistic time-resolved details of physicochemical transformations.
Molecular dynamics (MD) is a widely-used tool for simulating the molecular and materials properties. It is a common wisdom that molecular dynamics simulations should obey physical laws and, hence, lots...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.