Kinetic models and temperature control strategy were established to reflect the effect of temperature (22 °C-30 °C) on flavonoid production of Phellinus baumii (P. baumii) in 6-L fermentor. A modified Logistic equation, Hinshelwood model, and Luedeking Piret equation were used to describe mycelial growth and product formation. The influence of temperature on the estimated kinetic parameters was further studied by regression analysis. Based on kinetic parameters analysis, the new temperature control strategy was proposed. Briefly, at 0-43 H, decreasing temperature (30 °C-28 °C) can shorten the lag phase of mycelial growth, and at 43-90 H, fermentation temperature was reduced gradually from 28 °C to 24 °C to keep high flavonoid productivity. At the fermentation anaphase (90-161 H), temperature was controlled at 24 °C to relieve inhibition of flavonoid and maintain constant production capacity of flavonoid. As a result, the maximum flavonoid yield was reached 4.21 mg/100 mg cell dry weight by temperature control strategy, which was 70.45% higher than that at a constant temperature of 26 °C. Additionally, the establishment of kinetic models based on fermentation temperature, which presented here may provide a scientific basis for further large scales flavonoid production of P. baumii in submerged fermentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.