Conventional two-stroke cycle engine suffers from typical drawbacks including lower combustion efficiency and excessive emissions of uHC and CO which are largely due to low in-cylinder average charge temperature at low load and speed regions of engine operating conditions. Utilising the hot burned Exhaust Gas Recirculation (EGR) technique can boost the in-cylinder average charge temperature of the engine. The influence of hot burned gases applied by means of both Internal EGR and External EGR strategies on the combustion stability and exhaust gas emission of a single-cylinder twostroke cycle engine running at low-load and mid-load of operating conditions was investigated experimentally along with simulation works using 1-D engine simulation code. The results indicated that both In-EGR and Ex-EGR improved the combustion stability (lower misfire cycle) and decreased the concentrations of uHC and CO emissions, specifically at low speed region; however, NOx concentration was increased. At Internal EGR setting of 30%, the Coefficient of Variation for maximum in-cylinder pressure (COVPmax) reached the minimum by 5.64 while when External EGR percentage was 25%, COVPmax approached about 6.67 at the mid-speed (2000 rpm) of engine operating condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.