This paper analyses the response and receptivity of the hypersonic boundary layer over a wedge to free-stream disturbances including acoustic, vortical and entropy fluctuations. Due to the presence of an attached oblique shock, the boundary layer is known to support viscous instability modes whose eigenfunctions are oscillatory in the far field. These modes acquire a triple-deck structure. Any of three elementary types of disturbances with frequency and wavelength on the triple-deck scales interacts with the shock to generate a slow acoustic perturbation, which is reflected between the shock and the wall. Through this induced acoustic perturbation, vortical and entropy free-stream disturbances drive significant velocity and temperature fluctuations within the boundary layer, which is impossible when the shock is absent. A quasi-resonance was identified, due to which the boundary layer exhibits a strong response to a continuum of high-frequency disturbances within a narrow band of streamwise wavenumbers. Most importantly, in the vicinity of the lower-branch neutral curve the slow acoustic perturbation induced by a disturbance of suitable frequency and wavenumbers is in exact resonance with a neutral eigen mode. As a result, the latter can be generated directly by each of three types of free-stream disturbances without involving any surface roughness element. The amplitude of the instability mode is determined by analysing the disturbance evolution through the resonant region. The fluctuation associated with the eigen mode turns out to be much stronger than free-stream disturbances due to the resonant nature of excitation and in the case of acoustic disturbances, to the well-known amplification effect of a strong shock. Moreover, excitation at the neutral position means that the instability mode grows immediately without undergoing any decay, or missing any portion of the unstable region. All these indicate that this new mechanism is particularly efficient. The boundary-layer response and coupling coefficients are calculated for typical values of parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.