Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-assisted gene targeting is a promising method used in molecular breeding. We recently reported the successful introduction of this method in the monokaryotic Pleurotus ostreatus (oyster mushroom), PC9. However, considering their application in mushroom breeding, dikaryotic strains (with targeted gene mutations in both nuclei) need to be generated. This is laborious and time-consuming because a classical crossing technique is used. Herein, we report a technique that targets both nuclei of dikaryotic P. ostreatus, PC9×#64 in a transformation experiment using plasmid-based CRISPR/Cas9, with the aim of developing a method for efficient and rapid molecular breeding. As an example, we targeted strains with low basidiospore production ability through the meiosis-related genes mer3 or msh4. Four different plasmids containing expression cassettes for Cas9 and two different gRNAs targeting mer3 or msh4 were constructed and separately introduced into PC9×#64. Eight of the 38 dikaryotic transformants analyzed produced no basidiospores. Genomic PCR suggested that msh4 or mer3 mutations were introduced into both nuclei of seven out of eight strains. Thus, in this study, we demonstrated simultaneous gene targeting using our CRISPR/Cas9 system, which may be useful for the molecular breeding of cultivated agaricomycetes.
Gene targeting is useful to isolate strains with mutations in a gene of interest for efficient breeding. In this study, we generated msh4 or mer3 single-gene disruptant monokaryons using a Pleurotus ostreatus Δku80 strain for efficient gene targeting. Dikaryons of P. ostreatus Δmsh4×Δmsh4 or Δmer3×Δmer3 were isolated via backcrosses, and the number of basidiospores produced was measured. The number of basidiospores fell by an average 1/13.7 in the P. ostreatus Δmsh4×Δmsh4 dikaryons versus the P. ostreatus msh4+×Δmsh4 dikaryons, and 1/82.6 in the P. ostreatus Δmer3×Δmer3 dikaryons versus the P. ostreatus mer3+×Δmer3 dikaryons. To demonstrate the effects of ku80 disruption, P. ostreatus Δku80×Δku80 dikaryon strains were isolated and no significant effects on basidiospore production were observed. Fluorescence microscopy showed meiotic progression was arrested during prophase I in the msh4 or mer3 disruptants. To our knowledge, this is the first report on molecular breeding of sporeless strains in cultivated mushrooms using an efficient method for targeted gene disruption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.